a2 United States Patent

Suzuki et al.

US009116622B2

US 9,116,622 B2
Aug. 25,2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(86)

87

(65)

(1)

(52)

(58)

STORAGE SYSTEM HAVING NONVOLATILE
SEMICONDUCTOR STORAGE DEVICE
WITH NONVOLATILE SEMICONDUCTOR
MEMORY

Inventors: Susumu Suzuki, Ooiso (JP); Shigeo
Homma, Odawara (JP); Yuko Matsui,

Odawara (JP)

Assignee: Hitachi, Ltd., Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 9 days.

Appl. No.: 13/499,260

PCT Filed: Mar. 13, 2012

PCT No.: PCT/JP2012/001743

§371 (D),

(2), (4) Date: Mar. 29,2012

PCT Pub. No.: 'WO02013/136362
PCT Pub. Date: Sep. 19, 2013

Prior Publication Data

US 2013/0246722 Al Sep. 19, 2013

Int. Cl1.

GO6F 12/02 (2006.01)

GO6F 3/06 (2006.01)

U.S. CL

CPC GO6F 3/0608 (2013.01); GO6F 3/0616

(2013.01); GOGF 3/0652 (2013.01); GO6F
3/0688 (2013.01)
Field of Classification Search
USPC 711/162, 103
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
2006/0174075 Al*

2007/0271413 Al
2008/0005508 Al

8/2006 Sutoh ..o
11/2007 Fujibayashi et al.
1/2008 Asano et al.

(Continued)

711/162

FOREIGN PATENT DOCUMENTS

EP 1927920 A2 6/2008
Jp 2007-115232 A 5/2007
(Continued)
OTHER PUBLICATIONS

International Search Report and Written Opinion mailed Aug. 14,
2012 in corresponding PCT Application No. PCT/JP2012/001743;
11 pages.

Japan Patent Office Notification of Reasons for Refusal on applica-
tion 2014-528734 dispatced Mar. 10, 2015; pp. 1-3 (with partial
English translation).

(Continued)

Primary Examiner — Aimee Li
Assistant Examiner — Trang Ta
(74) Attorney, Agent, or Firm — Foley & Lardner LLP

(57) ABSTRACT

A storage system coupled to a host has a nonvolatile semi-
conductor storage device that includes a nonvolatile semicon-
ductor memory configured by a plurality of pages, and a
storage controller coupled to the semiconductor storage
device. In the case where data stored in the plurality of pages
become unnecessary, with this plurality of pages being the
basis of a region of a logical volume based on the nonvolatile
semiconductor storage device, the storage controller trans-
mits, to the nonvolatile semiconductor storage device, an
unnecessary reduction request for reducing the number of
pages that are the basis of the region having the unnecessary
data stored therein. On the basis of the unnecessary reduction
request, the nonvolatile semiconductor storage device invali-
dates the plurality of pages that are the basis of the region
having the unnecessary data stored therein.

15 Claims, 45 Drawing Sheets

NN

301

Storage system 300
__/ N\ 7
\ / \ Storage controller
RAID controller | I RAID controller
va -
1
SSD HDD HDD
(SAS) (SATA)
V4 KN KN
400 500 600

US 9,116,622 B2

Page 2
(56) References Cited 2012/0272123 Al* 10/2012 Yeh .o, 714/773
U.S. PATENT DOCUMENTS FOREIGN PATENT DOCUMENTS
2008/0126712 Al* 5/2008 Mizushima 711/141 Jp 2008-015623 A 1/2008
2009/0287878 Al 11/2009 Yamamoto et al. Jp 2008-159013 A 7/2008
2010/0131727 Al* 5/2010 Eguchietal. ... 711/162 Jp 2009-301525 A 12/2009
2011/0167215 Al* 7/2011 Eguchietal. 711/114 WO WO 2011/024239 Al 3/2011

2011/0231594 Al*
2012/0159058 Al*

9/2011 Sugimoto et al. ... 711/103
6/2012 Yonezawa et al. 711/104

* cited by examiner

U.S. Patent

Aug. 25, 2015 Sheet 1 of 45 US 9,116,622 B2
200 200 200
Y Vi
Host Host | e Host

1
4
Storage system 300

\ .4

\ _/
\ /

RAID controller

N\
NN

Storage controller

RAID controller

Vi N —~ P 4 A
/v N
301 301
SSD HDD HDD
(SAS) (SATA)
4 W W

U.S. Patent

Aug. 25, 2015 Sheet 2 of 45
To 200 To 200
310 320 330
Y4 y. /4 .4
OPEN |311 MF 321 Drive
Port PK A/ Port PK A Port PK
OPEN MF Drive
Port MP Port MP Port MP
\
3\31
Cache /?:jo 370
Memor
Y 350 4
. 4 Switch Package
Shared
Memory 160
NS 4
LM/PM 362 LM/PM
/L/
MP i MP MP ji MP
MP MP MP MP

MPPK#0

MPPK#3

US 9,116,622 B2

To 400

To 500
To 600

U.S. Patent Aug. 25, 2015 Sheet 3 of 45 US 9,116,622 B2

FIG. 3

To 301 To 301
400
4
401 401
yi4). 4
Higher-level I/F switch Higher-level I/F switch
Flash Flash Flash
Memory Memory Memory
PKG PKG PKG
Y4 NV Y4
10 10 10
SSD

U.S. Patent Aug. 25, 2015 Sheet 4 of 45 US 9,116,622 B2
.4
Flash memory PKG 11
DRAM W
20
4
FM controller
21 23
cPU Y o Higher-tevel UF [V
I v I
Internal bus
I 24 [24 I 24
FMIF W FMIF |/ FMIF W/
control control | erees control
unit unit unit
s 25
3 31 3 31 3 31
W
Kg\sw S 1 \;\SW SW /1/32 K;\SW SW /,/32
FM—l LFM FM-J I—FM FM—l l—FM
FM —FM FM ~—FM| | . FM —{FM
“}8 32 32 | 32 |
W W W
FMF— ~—FM FMP— " FM FMF— Y—FM
DIMM DIMM DIMM
N\ N N\
30 30 30

U.S. Patent Aug. 25, 2015 Sheet 5 of 45 US 9,116,622 B2

32
Y,/
Flash memory chip (FM chip)
32b 32b 32b

a2p)4 32p

Page0 4 Page0 Page0
’%Q_p

Page1 V' Page1 Page1
32p—

Page2 V4 Page?2 Page2

PageN |V PageN PageN

Block#0 Block#1 Block#M

U.S. Patent Aug. 25, 2015 Sheet 6 of 45 US 9,116,622 B2

State 1 Data State 2 Data
Logical VOL Logical VOL /
2012
7 2012

/
/

/

Block#A Block#B Block#A Block#B

32b 32b 32b 32b
e il y 4 Y4
/) ‘N_ 32p
vaid W
32p 32p
Ualid V invalid |/

Invalid data (scattered in block)

U.S. Patent Aug. 25, 2015 Sheet 7 of 45 US 9,116,622 B2

FIG. 7
701

|

(1) New write (3) Erase

702 703
v v

(2) Updated write

U.S. Patent Aug. 25, 2015 Sheet 8 of 45 US 9,116,622 B2

FIG. 8

Invalid

Invalid

Invalid

Invalid =— Erase per block

Invalid

Invalid

Invalid

U.S. Patent Aug. 25, 2015 Sheet 9 of 45 US 9,116,622 B2

32b 32b 32
oo [Z. 32p ikl '/"{329 4 32p
' Invalid /:1/ 'l Invalid /}/ 4
| i 1]

I Invalid : | Invalid
I |

1
| Invalid i o nvalid Blank
| 1
'l valid =T ' Invalid Blank
I . |
: Invalid : : Valid Blank
I ! i
| Invalid ' Invalid Blank
I 1 I
I Invalid : I Valid Blank
| 1
. ! Lo e

Block#A Block#B Block#C

U.S. Patent Aug. 25, 2015 Sheet 10 of 45 US 9,116,622 B2
FIG. 10
1001 (7)Erase /1}006

< All pages are blank }““(All pages are invalid)

(1) New allocation

1002
v 4

A

(6)No valid pages

1005
&

Blank page and valid page Valid page and invalid page
are mixed are mixed

(2) No blank pages | (3) Updated write

1003

y yid
C All pages are valid)

N

(4)Updated write
(5)No blank pages

004

1
NV
Blank page, valid page and invalid
page are mixed

U.S. Patent Aug. 25, 2015 Sheet 11 of 45 US 9,116,622 B2

FIG. 11

Host Data

/
(///’300

Virtual VOL

Pool 2001
3 @
“ Logical VOL
l Cache 340
O
Vi

AT
JRNE NN

SSP . HDD(SAS) HDD(SATA)
(RAID configuration) (RAID configuration) (RAID configuration)

U.S. Patent Aug. 25, 2015 Sheet 12 of 45 US 9,116,622 B2
FIG. 12
Host Data
/
200
o< | "%
Virtual VOL
2022
2001
V4
340
/ 400 500 600
Y4 205 Y% .4
4
L1l
SSD HDD(SAS) HDD(SATA)
(RAID configuration) (RAID configuration) (RAID configuration)

U.S. Patent Aug. 25, 2015 Sheet 13 of 45 US 9,116,622 B2
FIG. 13
Hast
200
V4
Virtual VOL
Pool 2/?91
2012
O
Logical VOL
Cache /;40
| |
O
400 500 600
4 @/ y.% 4
SSD HDD(SAS) HDD(SATA)
(RAID configuration) (RAID configuration) (RAID configuration)
Data (not required after moving)

U.S. Patent Aug. 25, 2015 Sheet 14 of 45 US 9,116,622 B2

Host
200
4
Virtual VOL
2022
Fixed-pattern data
Pool 3301
2 @
Logical VOL
v Cache /‘340
O
/
/ 400 500
A
SS_D . HDD(SAS) HDD(SATA)
(RAID configuration) (RAID configuration) (RAID configuration)

U.S. Patent Aug. 25, 2015 Sheet 15 of 45 US 9,116,622 B2

FIG. 15
Logical VOL
<l T 2012
Fixed-pattern data 1501

yid

24KB

Wirite
Cache /l/340

24KB

0

Write
32b

A 32
'/;psma

0
N~— I I
0

U.S. Patent Aug. 25, 2015 Sheet 16 of 45 US 9,116,622 B2

Logical VOL
. o
Fixed-pattern data 1501
yi'4
0 24KB
\ /
Wirite
340
Cache W
0 24KB
Wirite
i
P
V' 8KkB

Data pattern and size are
controlled in control table
without actually writing data

U.S. Patent Aug. 25, 2015 Sheet 17 of 45 US 9,116,622 B2

FIG. 17
Logical VOL
Fixed-pattern data 1501
v
0 24KB
N— I
Write
Cache /1/340
0 8KB

iWrite (Fixed-pattern data instruction + 24 KB)

U.S. Patent Aug. 25,2015 Sheet 18 of 45 US 9,116,622 B2
FIG. 18
Logical VOL
— Ty 2012
Fixed-pattern data 1501
). 4
0 24KB
\ /
Write
340
Cache W
0 8KB

rite (Fixed-pattern data instruction + 24 KB)

W
/,/321?2p
4

8KB

Data pattern and designated
size are managed in table
without actually writing

U.S. Patent Aug. 25, 2015 Sheet 19 of 45 US 9,116,622 B2

FIG. 19

301

RAID controller

1901
Unmap request
1902 1903
4 v
Logical address Data length

400
4

SSD

U.S. Patent Aug. 25, 2015 Sheet 20 of 45 US 9,116,622 B2

Writing after copying
from primary VOL to Host New data
snapshot VOL 500
\ 2 i
Primary VOL 1551 . 1553
(1)Write request Snapshot VOL
(8)Write
|
4)
2001 Pool
4
/ 5)
Logical
VoL 2012
Cache (6) 340
WV
[|
/
(7)
@) 500 400 600
4) 4
/
Old data

U.S. Patent Aug. 25, 2015 Sheet 21 of 45 US 9,116,622 B2

Writing after copying
from primary VOL to Host New data
snapshot VOL

/ 200
\ O /1/
1551 1553

(1)Write request

Snapshot VOL
(8)Write
m
4)
2001 Pool
&
/ (5)
Logical
VoL 2012
6) 340
y 4
1
[|
/

()
@ 500 /390

Fe=) [T [

Old data

U.S. Patent

Aug. 25, 2015 Sheet 22 of 45

US 9,116,622 B2

New data]
Old data (not required after deleting snapshot)

Host
200
Snapshot
1551 7 N . ____1553 VOL
|
1
I
: Delete
|
1
"""" 2001 Pool
A
Logical
VoL 2012
340
/4
500 400 600
yd y
A
/
: /

U.S. Patent

Aug. 25, 2015 Sheet 23 of 45

FIG. 23

US 9,116,622 B2

1551

Host

200
Snapshot
VOL
——————————]
1
1
: Delete
i
1
_____ 2001 Pool
4

data

340

U.S. Patent Aug. 25, 2015 Sheet 24 of 45 US 9,116,622 B2

FIG. 24 ‘//1 10
110a 110 110¢ 110d 110e 110f

4 4 Y v i
somey | vaity | Fnumoer | BO0C | PR | e
oég)gco)o Valid 0 0 0 NULL
0;8880 Valid 0 1 1 NULL
1o invalid NULL NULL NULL NULL
02:)880 Valid 0 1 0 NULL
o;g)ggo Valid 0 2 1 NULL
0’5%880 Valid 1 0 0 0
023880 Valid 1 0 0 0
ozgggo Valid 1 0 0 0
000 invalid NULL NULL NULL NULL

U.S. Patent Aug. 25, 2015 Sheet 25 of 45 US 9,116,622 B2

FIG. 25
111
111a 111b 1M1c 111d i11e

yod 4 4 4 A
FM number Block number | Page number State :gc?:::'s

0 0 0 Valid 0x10000000

0 0 0 Invalid NULL

0 0 0 Invalid NULL

0 0 0 Invalid NULL

0 0 1 Invalid NULL

0 1 0 Valid 0x10006000

0 1 1 Valid 0x10002000

1 0 0 Valid 0x20000000

1 0 0 Valid 0x20002000

1 0 0 Valid 0x20004000

1 0 0 Invalid NULL

U.S. Patent Aug. 25, 2015 Sheet 26 of 45 US 9,116,622 B2

) 351
351a 351b 351¢ 351d 351e 351f 351g
i 4 4 o VA

Pool | Device Logical Logical | THysical | o ical
VOL VOL State

number type address address

number number

0 SSD 0x1000 0x10000000 0 NULL Valid
0 SSD 0x1000 0x10002000 0 NULL Blank
0 SSD 0x1000 0x10004000 0 NULL Blank
0 SsD 0x1000 0x10006000 0 NULL Blank
0 SAS 0x2000 0x20000000 4 0x0000 Valid
0 SAS 0x2000 0x20002000 4 0x2000 Blank
0 SAS 0x2000 0x20004000 4 0x4000 Blank
0 SAS 0x2000 0x20006000 4 0x6000 Valid

U.S. Patent Aug. 25, 2015 Sheet 27 of 45 US 9,116,622 B2

' 352
352a 352b 352¢ 352d 352e 352f 352g
Y. 4 y 4). 4 4 y. % y/4
Virtual Host logical Extent Pool Logical VOL Logical
VOL State
address 1D number number address
number
0x0000 0x1000
0x0000 0000 Allocated 0 0 0x1000 0000
0x0000 0x1000
0x0000 2000 Allocated 0 0 0x1000 2000
0x0000 0x0000 Unallocated 0 NULL NULL NULL
4000
0x0000 0x1000
0x0000 6000 Allocated 0 0 0x1000 6000
0x0000 0x1000
0x0000 8000 Allocated 1 0 0x1000 8000
0x0000 0x0000 Unallocated 1 NULL NULL NULL
A000
0x0000 | %0990 | naliocated | 1 NULL NULL NULL
Co00
0x0000 0x0000 Unallocated 1 NULL NULL NULL
E000
0x0000 038881 Unallocated | 2 NULL NULL NULL

U.S. Patent Aug. 25, 2015 Sheet 28 of 45 US 9,116,622 B2

353
353a 353b 353¢ 353d 353e 353f 3539
)4 A il y 4 4 4
Virtual Host . .
VOL logical State Extent Pool Logical VOL Logical
D number number address
number address
0x0000 0x1000
0x0000 0000 Allocated 0 0 0x1000 0000
0x0000 0x1000
0x0000 8000 Allocated 1 0 0x1000 8000
0x0000 038881 Unallocated 2 NULL NULL NULL

U.S. Patent Aug. 25, 2015 Sheet 29 of 45 US 9,116,622 B2
FIG. 29 354
354a 354b 354¢ 354d
A 4 Y4
Virtual VOL) .
number Host logical address Current device type | Access frequency
0x0000 0x00000000 SSD Low
0x0000 0x00002000 SAS High
0x0000 0x00004000 SATA Medium

US 9,116,622 B2

U.S. Patent Aug. 25, 2015 Sheet 30 of 45
) 355
355a 3550 355¢ 355d
y 4 4 4
Primary VOL Validity D Snapshot VOL
number number
0x1000 Valid 0 0x1001
0x1000 Valid 1 0x1002
0x2000 Valid 0 0x2001

U.S. Patent

Aug. 25, 2015 Sheet 31 of 45 US 9,116,622 B2
356
356a 356b 356¢C 356d 356e 356f
4 y y 4 y
Snapshot . X
VOL Host logical State Pool Logical VOL Logical address
address number number
number
0x1001 0x0000 Allocated 0 0x1000 0x10000000
0000
0x1001 0)2(8880 Allocated 0 0x2000 0x20000000
0x1001 028880 Unallocated NULL NULL NULL

U.S. Patent Aug. 25, 2015 Sheet 32 of 45 US 9,116,622 B2

FIG. 32

C START)

S1
Search for blank page from /l/
physical-logical conversion table
S2
Allocate blank page /V

. : . NO
Physical region corresponding to
designated logical address is valid?

YES

Change state of physical region from “valid” to “invalid”
in physical-logical conversion table

‘.
T

Change state of allocated physical region from “blank” to “valid” S5
in physical-logical conversion table A/

56

V4

Change state of designated logical address to “valid”
in logical-physical conversion table

=

U.S. Patent Aug. 25, 2015 Sheet 33 of 45 US 9,116,622 B2

FIG. 33

(em)

S10
Specify physical block number
S11
V4
———><State of page of physical-logical conversion table is invalid?>—w—
YES S12
V4
————< Is there another record? >
YES
NO
S13
Erase block 4
S14
Update physical-logical conversion table /t/

=

U.S. Patent Aug. 25, 2015 Sheet 34 of 45 US 9,116,622 B2

FIG. 34

o

Specify reclamation-destination S21
physical block number

S22
Specify reclamation-source physical block number 4

A\ 4

S23
-——< Is there valid page in reclamation-source physical block? ﬁ(———
NO
YES
S24
Execute copying /l/
S25
Update logical-physical conversion table 4
and physical-logical conversion table
S26
<s there blank page in reclamation-destination physical b!ock&-ﬁz—s—‘
NO

=

U.S. Patent Aug. 25, 2015 Sheet 35 of 45 US 9,116,622 B2

FIG. 35

G

S31
Receive write request from host /l/
;32
< State in dynamic region allocation table is “unallocated?” >—ﬁ5—'
YES
S33
Allocate SSD free region from pool management table
S34
Update dynamic region allocation table
S35
Write data /1/

=

U.S. Patent Aug. 25, 2015 Sheet 36 of 45

FIG. 36

G

Receive write request from host

US 9,116,622 B2

S41

S42

<

State corresponding to host logical address of

dynamic extent region allocation table is “unallocated?”

P

YES

543

Allocate SSD free region from pool management table

Update dynamic extent region allocation table

S44

&
)

=

Write data /V

545

U.S. Patent Aug. 25, 2015 Sheet 37 of 45 US 9,116,622 B2

FIG. 37

(START) S51

| V4

NO
< Current device type is SSD? >—‘——'

YES 552
NO
-——< Medium access frequency?
YES 553

Allocate SAS free region from pool management table

. 554
Move to SAS
i

. . S55

Transmit unnecessary reduction request /t/
: S56

Update dynamic region allocation table v

and access frequency table

5;

Y

YES S58
Allocate SATA free region from pool management table 4
1 S59
Move to SATA 4
|
S60
Transmit unnecessary reduction request 4
|
) : : S61
Update dynamic region allocation table /l/
and access frequency table

< END)(

U.S. Patent Aug. 25, 2015 Sheet 38 of 45 US 9,116,622 B2

FIG. 38

C START)

;71
Receive write request
S72
V4 NO
< Copying to shapshot VOL is necessary? >—-—
YES S73
Stage old data from physical VOL of primary VOL to cache
/574
Copy old data from cache of primary VOL to cache of snapshot VOL
;75
De-stage old data from cache to physical VOL of snapshot VOL
S76

Write new data to primary VOL

=

U.S. Patent Aug. 25, 2015 Sheet 39 of 45 US 9,116,622 B2

FIG. 39

(START)

581
V.4
Accept snapshot deletion request
;82
Update snapshot pair management table
S83
Y NO
—-———>< Any region allocated to snapshot VOL? >-""
YES
S84
Y
Transmit unnecessary reduction request
585

Update snapshot data allocation table and pool management table

|
C END);

U.S. Patent Aug. 25, 2015 Sheet 40 of 45 US 9,116,622 B2

FIG. 40

(START)

S91
V4
Receive write request
S92
d NO
< Data is fixed-pattern data? >——
YES
S93
Search for free region from physical-logical conversion table
S94
YA
Write minimum unit of data into free region
/395
Update logical-physical conversion table
and physical-logical conversion table

= >

U.S. Patent Aug. 25, 2015 Sheet 41 of 45 US 9,116,622 B2
(START)

5101

.4

Receive write request
S102
V4

. NO

< Data is fixed-pattern data? }——
YES
S103

Search for free region from physical-logical conversion table

S104

V4

and physical-logical conversion table

Update logical-physical conversion table (pattern data is stored)

(END

N
J

A

U.S. Patent Aug. 25, 2015 Sheet 42 of 45 US 9,116,622 B2

FIG. 42

(START)

S111

Receive write request with fixed-pattern data instruction

S112

V4

Search for free region from physical-logical conversion table

S113

Write data into free region

S114

Update logical-physical conversion table
and physical-logical conversion table

=

U.S. Patent Aug. 25, 2015 Sheet 43 of 45 US 9,116,622 B2

FIG. 43

(START)

S121

.4

Receive write request with fixed-pattern data instruction

S122

V4

Search for free region from physical-logical conversion table

S123

Vi

Update logical-physical conversion table (fixed-pattern is stored)
and physical-logical conversion table

=

U.S. Patent Aug. 25, 2015 Sheet 44 of 45 US 9,116,622 B2

FIG. 44

(START)

S131

Receive unmap request

S132

V4

Specify region to be invalidate from logical-physical conversion table

S133

Update logical-physical conversion table
and physical-logical conversion table

=

U.S. Patent Aug. 25, 2015 Sheet 45 of 45 US 9,116,622 B2

FIG. 45

Storage controller
Logical VOL 9
/" "'\-\
_ ________/
Data -> Not required
__ /

Unnecessary reduction request

Valid -> Invalid

Valid -> Invalid

Valid -> Invalid

Blank

Blank

Blank

Blank

SSD

US 9,116,622 B2

1
STORAGE SYSTEM HAVING NONVOLATILE
SEMICONDUCTOR STORAGE DEVICE
WITH NONVOLATILE SEMICONDUCTOR
MEMORY

TECHNICAL FIELD

The present invention relates to a storage system that has a
nonvolatile semiconductor storage device with a nonvolatile
semiconductor memory.

BACKGROUND ART

A storage system generally provides a higher-level device
(e.g., host) with a logical volume that is created based on a
RAID (Redundant Array of Independent Disks) group con-
figured by a plurality of storage devices. In recent years, a
nonvolatile semiconductor storage device with a plurality of
nonvolatile memory chips is employed as each of the storage
devices, in addition to or in place of an HDD (Hard Disk
Drive). For example, a flash memory device with a plurality
of flash memory chips (“FM chips,” hereinafter) is employed
as the nonvolatile semiconductor storage device. The tech-
nology described in Patent Literature 1, for example, is
known as a storage system having such a flash memory
device.

CITATION LIST
Patent Literature
[PTL 1]
US Patent Application No. 2011/0231594 (Specification)
SUMMARY OF INVENTION
Technical Problem

In a flash memory device, for example, data (valid data) of
apage associated with a logical address data to be refreshed or
reclaimed. In other words, a process of reading the valid data
from the page and then writing the valid data into other page
is executed.

In some cases, the valid data becomes unnecessary in a
higher-level device of the flash memory device. The flash
memory device itself, however, cannot grasp such a case and
continues to manage the unnecessary data as the valid data. In
other words, although the valid data is no longer necessary,
the data is managed as the data to be refreshed and reclaimed.
This causes the unnecessary data to be written into a page,
reducing the operating life of the flash memory device.

The problem described above applies to a storage system
that has a nonvolatile semiconductor storage device other
than the flash memory device.

Solution to Problem

A storage system coupled to a host has a nonvolatile semi-
conductor storage device that includes a nonvolatile semicon-
ductor memory configured by a plurality of pages, and a
storage controller coupled to this semiconductor storage
device. When data stored in the plurality of pages are not
necessary, the plurality of pages being the basis of regions of
a logical volume based on the nonvolatile semiconductor
storage device, the storage controller transmits, to the non-
volatile semiconductor storage device, an unnecessary reduc-
tion request for reducing the number of pages that are the

10

15

20

25

30

35

40

45

50

55

60

65

2

basis of the regions in which the unnecessary data are stored.
In response to this unnecessary reduction request, the non-
volatile semiconductor storage device invalidates the plural-
ity of pages that are the basis of the regions in which the
unnecessary data are stored.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a configuration example of a computer sys-
tem according to an embodiment.

FIG. 2 shows a configuration example of a RAID controller
according to the embodiment.

FIG. 3 shows a configuration example of a flash memory
device according to the embodiment.

FIG. 4 shows a configuration example of a flash memory
package according to the embodiment.

FIG. 5 shows a configuration example of a flash memory
chip according to the embodiment.

FIG. 6 is a diagram for illustrating how data of the flash
memory chip according to the embodiment are updated.

FIG. 7 is a diagram for illustrating a state transition of a
page according to the embodiment.

FIG. 8 is a diagram for illustrating how the data of the flash
memory chip according to the embodiment are erased.

FIG. 9 is a diagram for illustrating reclamation according
to the embodiment.

FIG. 10 is a diagram for illustrating a state transition of a
block according to the embodiment.

FIG. 11 is a diagram for illustrating a dynamic region
allocation process according to the embodiment.

FIG. 12 is a diagram for illustrating a dynamic extent
region allocation process according to the embodiment.

FIG. 13 is a diagram for illustrating an inter-tier dynamic
migration according to the embodiment.

FIG. 14 is a diagram for illustrating a fixed-pattern data
write process performed after the inter-tier dynamic migra-
tion according to the embodiment.

FIG. 15 is a diagram for illustrating a first example of the
fixed-pattern data write process according to the embodi-
ment.

FIG. 16 is a diagram for illustrating a second example of
the fixed-pattern data write process according to the embodi-
ment.

FIG. 17 is a diagram for illustrating a third example of the
fixed-pattern data write process according to the embodi-
ment.

FIG. 18 is a diagram for illustrating a fourth example of the
fixed-pattern data write process according to the embodi-
ment.

FIG. 19 is a diagram for illustrating an unmap request
according to the embodiment.

FIG. 20 is a diagram for illustrating a snapshot creation
process according to the embodiment.

FIG. 21 is a diagram for illustrating another example of the
snapshot creation process according to the embodiment.

FIG. 22 is a diagram for illustrating unnecessary data gen-
erated upon snapshot deletion according to the embodiment.

FIG. 23 is a diagram for illustrating the fixed-pattern data
write process performed after the snapshot deletion according
to the embodiment.

FIG. 24 shows an example of a logical-physical conversion
table according to the embodiment.

FIG. 25 shows an example of a physical-logical conversion
table according to the embodiment.

FIG. 26 shows an example of a pool management table
according to the embodiment.

US 9,116,622 B2

3

FIG. 27 shows an example of a dynamic region allocation
table according to the embodiment.

FIG. 28 shows an example of a dynamic extent region
allocation table according to the embodiment.

FIG. 29 shows an example of an access frequency table
according to the embodiment.

FIG. 30 shows an example of a pair management table
according to the embodiment.

FIG. 31 shows an example of a snapshot data allocation
table according to the embodiment.

FIG. 32 shows an example of a flowchart of a write process
according to the embodiment.

FIG. 33 shows an example of a flowchart of a block erase
process according to the embodiment.

FIG. 34 shows an example of a flowchart of the reclamation
according to the embodiment.

FIG. 35 shows an example of a flowchart of the dynamic
region allocation process according to the embodiment.

FIG. 36 shows an example of a flowchart of the dynamic
extent region allocation process according to the embodi-
ment.

FIG. 37 shows an example of a flowchart of the inter-tier
dynamic migration according to the embodiment.

FIG. 38 shows an example of a flowchart of the snapshot
creation process according to the embodiment.

FIG. 39 shows an example of a flowchart of a snapshot
deletion process according to the embodiment.

FIG. 40 shows an example of a flowchart of the first
example of the fixed-pattern data write process according to
the embodiment.

FIG. 41 shows an example of a flowchart of the second
example of the fixed-pattern data write process according to
the embodiment.

FIG. 42 shows an example of a flowchart of the third
example of the fixed-pattern data write process according to
the embodiment.

FIG. 43 shows an example of a flowchart of the fourth
example of the fixed-pattern data write process according to
the embodiment.

FIG. 44 shows an example of a flowchart of an unmap
request process according to the embodiment.

FIG. 45 shows an outline of the embodiment.

DESCRIPTION OF EMBODIMENTS

An embodiment of the present invention is now described
hereinafter with reference to the drawings.

Identification information items that include numbers for
specifying the elements (e.g., pages, blocks, flash memory
chips (FM chips), switches (SW), pools, physical volumes,
logical volumes, virtual volumes, etc.) are used in the follow-
ing description, but information items without such numbers
may be used as the identification information items.

When the elements of the same type are distinguished in
the following description, a combination of an element name
and an identification information item is often used in place of
a combination of an element name and a reference numeral.
For instance, a block with identification information (identi-
fication number) “0” is written as “block #0.”

Moreover, in the following description, an interface device
is often abbreviated as “I/F.”

In the following description, a nonvolatile semiconductor
memory is referred to as “flash memory” (FM). The flash
memory is a flash memory, in which data are deleted per block
and accessed per page—typically a NAND-type flash
memory. The flash memory may also be other type of flash
memory (e.g., a NOR-type flash memory) in place of a

10

25

30

35

40

45

55

4

NAND-type flash memory. In addition, other type of nonvola-
tile semiconductor memory, such as a phase-change memory,
may be used in place of the flash memory.

As described above, the nonvolatile semiconductor
memory is a NAND-type flash memory in the following
description. Thus, terms such as “page” and “block”™ are used.
In the case where a certain logical region (“target logical
region” in this paragraph) is a write destination, where a page
is already allocated to the target logical region (“first page”in
this paragraph), and where data is stored in the first page, a
blank page (“second page” in this paragraph), in place of the
first page, is allocated to the target logical region and data is
written to the second page. The data written to the second
page is the latest data for the target logical region, and the data
stored in the first page becomes old data for the target logical
region. In the following description, the latest data and the old
data of each logical region are often referred to as “valid data”
and “invalid data,” respectively. In addition, a page storing the
valid data therein and a page storing the invalid data therein
are often referred to as “valid page” and “invalid page,”
respectively.

The term “host” means a higher-level device (e.g., a com-
puter) of a storage system.

The term “virtual volume (virtual VOL)” means a virtual
logical volume (logical VOL). The virtual VOL can be rec-
ognized by, for example, the host. The virtual VOL may be,
for example, a volume based on Thin Provisioning or a snap-
shot VOL described hereinafter.

The term “logical volume (logical VOL)” means a volume
that includes a storage region allocated to the virtual VOL,,
and may be based on a RAID group (a plurality of flash
memory devices) of the storage system having the logical
VOL, or may be based on a storage device of an external
storage system coupled to the aforementioned storage sys-
tem.

The term “pool” means a region having one logical VOL or
having a collection of a plurality of logical VOLs.

The term “primary volume (primary VOL)” means an
original logical VOL designated based on an I/O request from
the host.

The term “snapshot volume (snapshot VOL)” means a
virtual VOL that expresses an image of a snapshot of the
primary VOL.

The term “physical volume (physical VOL)” means a
physical storage device, such as an SSD (Solid State Device).

The term “logical address” means an address of a logical
(or virtual) region (e.g., a logical region provided by the
virtual VOL, logical VOL, or physical VOL).

The term “physical address” means an address of a physi-
cal region (e.g., a physical region that is allocated to the
logical region provided by the physical VOL).

The term “extent” means a logical region allocated to the
virtual VOL. The logical VOLs configuring the pool is
divided into two or more extents. The extents are allocated
from the pool to the virtual VOLs. The plurality of extents
may be of the same size or different sizes. The size of each
extent is typically greater than the size of data (unit size)
according to a read request or a write request from the host.

FIG. 45 shows an outline of the present embodiment.

A storage system has an SSD, a logical VOL based on the
SSD, and a storage controller coupled to the SSD. Data stored
inthe logical VOL are stored in the SSD. An input/output size,
which is a unit size of data input to and output from the logical
VOL, is greater than the size of each of the pages configuring
aflash memory ofthe SSD. For example, the input/output size
is an integral multiple of (N times greater than (where N is an

US 9,116,622 B2

5

integer of 2 or more)) the page size. Specifically, the input/
output size is three times greater than the page size.

Data inside a logical region of the logical VOL becomes
unnecessary to a host of the storage system when a certain
event occurs. Examples of the certain event include an event
where the data is moved from the logical region to other
logical region and an event where a virtual VOL, to which is
allocated an extent having the data stored therein, is deleted.

Upon this certain event, the storage controller transmits an
unnecessary reduction request to the SSD that is the basis of
the logical region storing the data unnecessary to the host. The
unnecessary reduction request is a request for reducing the
number of pages that are the basis of the logical region storing
the data unnecessary to the host. When the SSD receives the
unnecessary reduction request, the SSD changes the state of
at least one of the plurality of pages from “valid” to “invalid,”
the plurality of pages being the basis of the logical region
storing the data unnecessary to the host.

The present embodiment is now described hereinafter in
detail.

FIG. 1 shows a configuration example of a computer sys-
tem according to the present embodiment.

The computer system has a storage system 1 and a host
200. There can be one or more of the storage systems 1 and the
hosts 200. The storage system 1 and the host 200 are coupled
to each other by a communication network (e.g., a SAN
(Storage Area Network)). The storage system 1 is for storing
data used by the host 200. The host 200 executes various
processes to read the data from the storage system 1 or write
data into the storage system 1.

The storage system 1 has a plurality of physical VOLs, and
a storage controller 300 coupled to the plurality of physical
VOLs.

The plurality of physical VOLs include a plurality of types
of physical VOLs. There may be one or more of at least one
type of physical VOL. Examples of the physical VOLs
include an SSD 400, an HDD (Hard Disk Drive) device (SAS:
Serial Attached SCSI) 500, and an HDD (SATA: Serial ATA)
600.

The storage controller 300 has a plurality of RAID (Redun-
dant Array of Independent (or Inexpensive) Disks) controllers
301. Each of the RAID controllers 301 is coupled to the SSD
400, the HDD (SAS) 500, and the HDD (SATA) 600 via
internal buses.

Note that each RAID controller 301 is merely an example
of'a higher-level device of the SSD 400, the HDD (SAS) 500,
and the HDD (SATA) 600. The RAID controller 301 receives
an [/O command from a higher-level device of the RAID
controller 301 (e.g., the host 200), and controls access to the
SSD 400, the HDD (SAS) 500, or the HDD (SATA) 600 in
response to the /O command. The RAID controller 301 may
perform a process for managing the extents of the SSD 400,
the HOD (SAS) 500 and the HDD (SATA) 600 as storage tiers
(tiers) that are different from one another, and allocating the
extent of any of the storage tiers to a logical region to which
data is written. In other words, each tier is configured by two
or more extents based on the physical VOLs of the same type.
Although not shown, the storage system 1 may have a RAID
group configured by a plurality of the SSDs 400, a RAID
group configured by a plurality of the HDDs (SAS) 500, and
a RAID group configured by a plurality of HDDs (SATA)
600.

FIG. 2 shows a configuration of the RAID controller
according to the embodiment.

The RAID controller 301 has an open port package 310, a
mainframe package 320, a drive port package 330, a cache
memory 340, a shared memory 350, one or more micropro-

10

20

25

30

35

40

45

50

55

60

65

6

cessor packages (MPPK) 360, and a switch package 370. The
open port package 310, the mainframe package 320, the drive
port package 330, the cache memory 340, the shared memory
350, and the one or more microprocessor packages (MPPK)
360 are coupled to one another via the switch package 370.

The open port package 310 has an open package micropro-
cessor (Open Port MP) 311, which is a port enabling the
communication with the host 200 of an open system. The
mainframe package 320 has a mainframe microprocessor
(MF Port MP) 321, which is a port enabling the communica-
tion with the mainframe host 200. The drive port package 330
has a drive package port microprocessor (Drive Port MP) 331,
which is a port enabling the exchange of data with the physi-
cal VOLs 400, 500, 600.

The cache memory 340 temporarily stores data to be read
or written. The shared memory 350 stores various informa-
tion items used by MP 362 of each MPPK 360. In the present
embodiment, the shared memory 350 stores a pool manage-
ment table (see FIG. 26), a dynamic region allocation table
(see FIG. 27), a dynamic extent region allocation table (see
FIG. 28), an access frequency table (see FIG. 29), a pair
management table (see FIG. 30), a snapshot data allocation
table (see FIG. 31), and the like. These tables are described
hereinafter.

Each MPPK 360 has a local memory and program memory
(LM/PM) 361, and one or more microprocessors (MP) 362.
The LM/PM 361 is for storing data and programs used by the
MP 362. The MP 362 executes the programs stored in the
LM/PM 361 to execute various processes by using the data
stored in the LM/PM 361 and/or the data stored in the shared
memory 350.

FIG. 3 shows a configuration example of the SSD accord-
ing to the present embodiment.

The SSD 400 has one or more higher-level I/F switches
(higher-level I/F Switch) 401 and one or more flash memory
packages (PKG) 10. The higher-level I/F switches 401 relay
data between the RAID controllers 301 and the plurality of
flash memory PKGs 10.

FIG. 4 shows a configuration example of the flash memory
package according to the present embodiment.

Each flash memory PKG 10 has a DRAM (Dynamic Ran-
dom Access Memory) 11, an example of a main storage
memory. The flash memory PKG 10 also has an FM controller
20 and a plurality of (or one) DIMM (Dual Inline Memory
Module) 30. The DRAM 11 stores data and the like used by
the FM controller 20. The DRAM 11 may be mounted in the
FM controller 20 or in a member different from the FM
controller 20. In the present embodiment, the DRAM 11
stores a logical-physical conversion table 110 (see F1G. 24),a
physical-logical conversion table 111 (see FIG. 25) and the
like. These tables are described hereinafter.

The FM controller 20 is configured by, for example, a
single ASIC (Application Specific Integrated Circuit), and
has a CPU 21, an internal bus 22, a higher-level I/F (interface)
23, and a plurality of (or one) FM I/F control units 24. The
internal bus 22 couples the CPU 21, the higher-level I/F 23,
the DRAM 11, and the FM I/F control units 24 to one another
in a manner as to enable the communication therebetween.

The higher-level I/F 23 is coupled to the higher-level I/F
switch 401 to mediate the communication with the higher-
level device thereof. The higher-level I/F 23 is, for example,
an I/F of the SAS. Each FM I/F control unit 24 mediates the
exchange of data between the FM controller 20 and a plurality
of FM chips 32. In the present embodiment, the FM I/F
controlunit 24 has a plurality of sets of buses (data buses, etc.)
for executing the exchange of data with the FM chips 32, and
mediates the exchange of data with the plurality of FM chips

US 9,116,622 B2

7

32 by using the plurality of buses. In the present embodiment,
the FM I/F control unit 24 is provided to its corresponding
DIMM 30. The FM I/F control unit 24 mediates the commu-
nication with the plurality of FM chips 32 of the DIMM 30
coupledto this FM I/F control unit 24. The FM I/F control unit
24 may be in charge of two or more of the DIMMs 30. The
CPU 21 can execute programs stored in the DRAM 11 (or
other storage region, not shown) to execute various processes.
There may be more than one CPUs 21, and the plurality of
CPUs 21 may share various processes. The processes per-
formed by the CPU 21 are described specifically hereinafter.

Each DIMM 30 has one or more SWs 31 and the plurality
of FM chips 32. The FM chips 32 are each an ML.C (Multi
Level Cell)-type NAND flash memory chip, for example. An
MLC-type FM chip has less number of rewriting times than
an SLC-type FM chip but is characterized in having a high
memory capacity per cell.

The SWs 31 are coupled to the FM I/F control unit 24 via
buses 25 including the data buses. In the present embodiment,
each of the SW5s 31 is provided in a manner as to correspond
to a set of buses 25 including the data buses that are coupled
to the FM I/F control unit 24. The SW 31 is also coupled to the
plurality of FM chips 32 by buses 28 including the data buses.
The SW 31 can be coupled to the FM I/F control unit 24 and
the FM chips 32 by selectively switching between the bus 25
and any of the buses 28. Because the DIMM 30 is provided
with the SWs 31 and the plurality of FM chips 32 that are
wired, it is not necessary to prepare connectors for coupling
them, and a reduction in the number of required connectors
can be expected.

As shown in FIG. 4, the FM chips 32 are coupled to each
SW 31 without having another FM chip 32 therebetween;
however, the FM chips 32 may be coupled to the SW 31 by
another FM chip 32. In other words, two or more of serially
arranged FM chips 32 may be coupled to the SW 31.

FIG. 5 shows a configuration example of the flash memory
chip according to the embodiment.

Each of the flash memory chips (FM chips) 32 has a plu-
rality of blocks 325. Each of the blocks 325 has a plurality of
pages 32p. Each page 32p represents a unit by which data is
read/written from/to the FM chip 32. In the present embodi-
ment, the size of the page 32p is 8 KB. Note, however, that the
size of the page 32p is not limited thereto.

FIG. 6 is a diagram for illustrating how data of the flash
memory chip according to the embodiment are updated.

When data is written into a logical VOL 2012, in the FM
chip 32 the data is stored in a page 32p of the block 325 of the
FM chip 32, the page 32p being associated with aregion of the
logical VOL 2012 in which the data is stored, as shown in a
state 1. In this case, the page 32p is set and managed as a valid
page, which means that valid data is stored therein.

When new data (updated data) is written to the same region
of the logical VOL 2012, the updated data is stored in other
page 32p, as shown in a state 2, and the page 32p in which the
data prior to update (old data) is stored is set and managed as
an invalid page, which means that invalid data is stored
therein. Once various data are updated in this manner, the
invalid pages 32p end up being scattered in the block 3264.

FIG. 7 is a diagram for illustrating a state transition of a
page according to the embodiment.

When new data is written into one of the pages 32p, which
is in a blank state 701 where data can be stored therein ((1) in
FIG. 7), writing the data into the page 32p causes the page 32p
to enter a valid state 702. Subsequently, when the data stored
in this page 32p is updated ((2) in FIG. 7), the page 32p enters
an invalid state 703. When the page 32p in the invalid state

10

15

20

25

30

35

40

45

50

55

60

65

8

703 is erased (the data within the page 32p is erased) ((3) in
FIG. 7), the page 32p returns to the blank state 701.

FIG. 8 is a diagram for illustrating how the data of the flash
memory chip according to the embodiment are erased.

In the FM chip 32, the data stored in each block 325 can be
erased per block. In the present embodiment, therefore, the
data are erased after all of the pages 32p belonging to the
block 325 become invalid. Note that erasing the data of each
block is also referred to as “erasing the block.”

FIG. 9 is a diagram for illustrating reclamation according
to the embodiment.

Reclamation is a process for generating a block that can be
erased. In this reclamation process, as shown in FIG. 9, the
data of the valid pages 32p of the blocks 325 having a prede-
termined number or more of invalid pages (a block #A, a
block #B) are copied to other block 326 having a blank page
(ablock #C in this example), and the copy-source valid pages
are set as invalid pages. As a result, all of the pages 32p ofthe
copy-source blocks 325 (the block #A, the block #B) become
invalid pages, and the copy-source blocks 325 become the
blocks that can be erased. This makes it possible for the
blocks 325 to be erased in subsequent processes.

FIG. 10 is a diagram for illustrating a state transition of a
block according to the embodiment.

Regarding the block 3254 in a state 1001 where all of the
pages 32p are blank, when the pages 32p of' this block 325 are
newly allocated to logical regions and data are written thereto
((1)in FIG. 10), this block 325 enters a state 1002 in which the
blank pages and the valid pages are mixed. In the block 325 in
this state 1002, when all of the blank pages are newly allo-
cated and data are written thereto, and hence there are no more
blank pages ((2) in FIG. 10), the block 325 enters a state 1003
in which all of the pages are valid pages.

When updating the valid pages of the block 324 in the state
1002 where the blank and valid pages are mixed ((3) in FIG.
10), the valid pages become invalid pages, and consequently
the block 325 enters a state 1004 where the blank, valid and
invalid pages are mixed.

Furthermore, when updating the valid pages of the block
325 in the state 1003 where all of the pages are valid pages
((4) in FIG. 10), the valid pages become invalid pages, and
consequently the block 325 enters a state 1005 in which the
valid pages and the invalid pages are mixed.

Inthe block 325 in the state 1004 where the blank, valid and
invalid pages are mixed, when all of the blank pages are newly
allocated and data are written thereto, and hence there are no
more blank pages ((5) in FIG. 10), the block 325 enters the
state 1005 where the valid pages and the invalid pages are
mixed.

Inthe block 325 in the state 1005 where the valid pages and
the invalid pages are mixed, when updating the valid pages or
the data of the valid pages are moved due to reclamation, and
hence there are no more valid pages ((6) in FIG. 10), the block
32b enters a state 1006 where all of the pages are invalid
pages. When the block 325 in the state 1006 is erased ((7) in
FIG. 10), the block 325 returns to the state 1001 where all of
the pages are blank.

FIG. 11 is a diagram for illustrating a dynamic region
allocation process according to the embodiment.

The host 200 transmits a write request designating a region
(a write region) of a virtual VOL 2022. The size of data
according to which the host 200 conforms to the write request
(“write data” hereinafter) is, for example, an integral multiple
of (e.g., N times greater than (where N is an integer of 2 or
more)) the page volume of the SSD 400. In the present
embodiment, for example, the size of each page is 8 KB, and
the size of the write data is 24 KB, which is three times greater

US 9,116,622 B2

9

than the aforementioned page size. In the storage system 1,
once the write request is received, in the case where the region
of'the logical VOL 2012 of a pool 2001 is not allocated to the
write region of the virtual VOL 2022, the region of the logical
VOL 2012 of the pool 2001 that is the same size as that of the
write region is allocated. As a result, when the allocated
region of the logical VOL 2012 corresponds to a region of the
SSD 400, the write data is written to the region (page) of the
SSD 400 via the cache 340.

In place of this dynamic region allocation process, a
dynamic extent region allocation process described below
may be performed.

FIG. 12 is a diagram for illustrating a dynamic extent
region allocation process according to the embodiment.

In the dynamic extent region allocation process, in the case
where the region of the logical VOL 2012 of the pool 2001 is
not allocated to the write region of the virtual VOL 2022, an
extent 2052, which is a region larger than the write region, is
allocated. Allocating the extent 2052 larger than the write
region can reduce the amount of data related to management
information used for managing the region allocation.

In the dynamic extent region allocation process shown in
FIG. 12 and the dynamic region allocation process shown in
FIG. 11, the logical region (extent) inside the pool is allocated
to the region of the virtual VOL. Thus, the following descrip-
tions of the dynamic extent region allocation process and the
dynamic region allocation process describe the allocation of
“extents.”

Next is described an inter-tier dynamic migration as an
example where unnecessary data are generated in the SSD
400 of the storage system according to the present embodi-
ment.

FIG. 13 is a diagram for illustrating the inter-tier dynamic
migration according to the embodiment.

The inter-tier dynamic migration means that an extent in
which data is stored is changed to other tier extent, based on
the frequency of access to a virtual region of the virtual VOL
or an extent allocated to the virtual region. In other words, the
inter-tier dynamic migration is to move the data from an
extent to an extent of other tier.

When moving data stored in the extent of the SSD 400 to an
extent of other tier (the extent of the HDD (SAS) 500 in this
example), the storage system 1 allocates the extent of the
destination tier, from the pool 2001 to the abovementioned
region, reads the corresponding data from the SSD 400 into
the cache 340, and moves this data to the allocated extent of
the destination tier (the extent of the HDD (SAS) 500 in this
example). The storage system 1 then changes the mapping of
the dynamic region allocation table and the like so as to make
the region of the virtual VOL 2022 having the data correspond
to the extent of the tier to which the data was moved.

After the execution of'this inter-tier dynamic migration, the
data stored in the storage regions of the SDD 400 are no
longer referenced by the host 200 and hence become unnec-
essary. In the SSD 400, however, the plurality of pages having
these data stored therein remain managed as the valid pages in
which valid data are stored.

In the present embodiment, for example, a fixed-pattern
data write process described hereinafter is executed as a
method for reducing the regions storing the unnecessary data.

FIG. 14 is a diagram for illustrating a fixed-pattern data
write process performed after the inter-tier dynamic migra-
tion according to the embodiment.

Here, “fixed-pattern data” means data of the same size as
the write data, and a plurality of partial data obtained as a
result of separating the write data into the pages 32p are the

10

15

20

25

30

35

40

45

50

55

60

65

10

data of the same data pattern. The fixed-pattern data may be,
for example, data whose bits are all “0” or “1.”

The fixed-pattern data write process is executed subse-
quent to the inter-tier dynamic migration (after the data is
moved to an extent of other tier), and, for example, before an
extent to be mapped (a source extent) to a virtual region where
the moved data is stored (a region in the virtual VOL) is
changed to other extent (a destination extent). In the fixed-
pattern data write process, the storage system 1 writes the
fixed-pattern data (e.g., data whose bits are all “0”) to a
plurality of pages (the plurality of pages of the SSD 400 in
which the data before migration are stored) corresponding to
the extent (the source extent) in which the unnecessary data
are stored.

FIGS. 15 to 18 show first to fourth examples of the fixed-
pattern data write process.

FIG. 15is a diagram for illustrating the first example of the
fixed-pattern data write process according to the embodi-
ment.

In the fixed-pattern data write process according to the first
example, the RAID controller 301 transmits, to the SSD 400
(the flash memory package 10 of the SSD 400), a write
request for writing fixed-pattern data 1051 of the unit size of
the write data (e.g., 24 KB) into extents in which unnecessary
data are stored (regions of the logical VOL 2012 configuring
the pool). As a result, the fixed-pattern data 1051 is transmit-
ted to the SSD 400 via the cache 340. The SSD 400 sets a
plurality of (three, in this example) pages in which the unnec-
essary data were stored, as invalid pages. The SSD 400 then
stores partial data of the fixed-pattern data 1051, the size of
which is equivalent to that of one page, into a single page 32p,
and updates the information of the logical-physical conver-
sion table 110 and of the physical-logical conversion table
111 so as to make each of the regions divided (compressed)
according to the page size of the regions of the logical volume
(the regions equivalent to the write data size) correspond to
this page 32p. In this manner, the number of valid pages
having the unnecessary data stored therein can be reduced.
For instance, in the case of one write data point, the number of
valid pages can be reduced from three to one.

FIG. 16 is a diagram for illustrating the second example of
the fixed-pattern data write process according to the embodi-
ment.

In the fixed-pattern data write process according to the
second example, the RAID controller 301 transmits, to the
SSD 400, a request for writing the fixed-pattern data 1051 of
the unit size of the write data (e.g., 24 KB) into the regions of
the logical VOL 2012 in which unnecessary data are stored.
As a result, the fixed-pattern data 1051 is transmitted to the
SSD 400 via the cache 340. The SSD 400 sets a plurality of
(three, in this example) pages in which the unnecessary data
were stored, as invalid pages. The SSD 400 then updates the
information of the logical-physical conversion table 110 and
of the physical-logical conversion table 111 so as to make
each of the regions divided (compressed) according to the
page size of the region of the logical volume (the regions
equivalent to the write data size) correspond to another page
32p, and so as to make a data pattern for specifying the
fixed-pattern data (e.g., “0,” if the data pattern is fixed-pattern
data whose bits are all “0”) correspond to each of the regions.
In this manner, the number of valid pages having the unnec-
essary data stored therein can be reduced. For instance, in the
case of one write data point, the number of valid pages can be
reduced from three to one. In addition, it is not necessary to
store the data in the pages.

US 9,116,622 B2

11

FIG. 17 is a diagram for illustrating the third example of the
fixed-pattern data write process according to the embodi-
ment.

In the fixed-pattern data write process according to the
third example, the RAID controller 301 transmits, to the SSD
400, a write request (a write request with fixed-pattern data
instruction) that includes partial data of the page size and size
information indicating the size of the fixed-pattern data 1051,
the partial data being obtained by dividing (compressing) the
fixed-pattern data 1051, as a request for writing the fixed-
pattern data 1051 of the unit size of the write data (e.g., 24
KB) into the regions of the logical VOL. 2012 in which unnec-
essary data are stored. As a result, the partial data are trans-
mitted to the SSD 400 via the cache 340. The SSD 400
specifies a plurality of (three, in this example) pages in which
the unnecessary data are stored, based on the size informa-
tion, and then sets the pages as invalid pages. The SSD 400
then stores the partial data in a single page 32p, and updates
the information of the logical-physical conversion table 110
and of the physical-logical conversion table 111 so as to make
each of the regions divided according to the page size of the
regions of the logical volume (the regions equivalent to the
write data size) correspond to this page 32p. In this manner,
the number of valid pages in which the unnecessary data are
stored can be reduced. For instance, in the case of one write
data point, the number of valid pages can be reduced from
three to one.

FIG. 18 is a diagram for illustrating the fourth example of
the fixed-pattern data write process according to the embodi-
ment.

In the fixed-pattern data write process according to the
fourth example, the RAID controller 301 transmits, to the
SSD 400, a write request that includes partial data of the page
size and size information (e.g., 24 KB) indicating the size of
the fixed-pattern data 1051, the partial data being obtained by
dividing (compressing) the fixed-pattern data 1051, as a
request for writing the fixed-pattern data 1051 of the size of
the write data (e.g., 24 KB) into the regions of the logical VOL
2012 in which unnecessary data are stored. As a result, the
partial data are transmitted to the SSD 400 via the cache 340.
The SSD 400 specifies a plurality of (three, in this example)
pages in which the unnecessary data were stored, based on the
size information, and then sets the pages as invalid pages. The
SSD 400 then updates the information of the logical-physical
conversion table 110 and of the physical-logical conversion
table 111 so as to make each of the regions divided according
to the page size of the regions of the logical volume (the
regions equivalent to the write data size) correspond to
another page 32p and so as to make a data pattern for speci-
fying the fixed-pattern data (e.g., “0,” if the data pattern is
fixed-pattern data whose bits are all “0”) correspond to each
of the regions. In this manner, the number of valid pages in
which the unnecessary data are stored can be reduced. For
instance, in the case of one write data point, the number of
valid pages can be reduced from three to one. In addition, it is
not necessary to store the data in the pages.

Moreover, a process using an unmap request, according to
a fifth example described hereinafter, may be executed as
another method for reducing the number of regions (pages) in
which unnecessary data are stored.

FIG. 19 is a diagram for illustrating an unmap request
according to the embodiment.

An unmap request 1901 has the fields of a logical address
1902 and a data length 1903. The logical address 1902 is for
storing a logical address indicating the top page to be invali-

10

15

20

25

40

45

50

55

60

65

12

dated. The data length 1903 is for storing a data length from
the top logical address of a logical address range including the
page to be invalidated.

When using the unmap request 1901, the RAID controller
301 specifies a range of logical addresses in which the unnec-
essary data are stored, sets the top logical address in the
logical address 1902, sets the data length of the range of
logical addresses in the data length 1903, and then transmits
the unmap request 1901 to the SSD 400. Once the flash
memory package 10 of the SSD 400 acquires the unmap
request 1901, the flash memory package 10 specifies a range
of corresponding logical addresses based on the values of the
logical address 1902 and the data length 1903 of the unmap
request 1901, and updates the information of the logical-
physical conversion table 110 and of the physical-logical
conversion table 111 so as to manage a plurality of pages
associated with the range of the logical addresses, as invalid
pages. As a result, all of the pages in which the unnecessary
data are stored become invalid, and subsequently the pages
can be used as blank pages.

Next is described a snapshot creation process and a snap-
shot deletion process that are performed in the storage system
of the present embodiment as other examples where unnec-
essary data are generated in the SSD 400.

FIG. 20 is a diagram for illustrating the snapshot creation
process according to the embodiment.

In the snapshot creation process, when the host 200 trans-
mits a write request for writing new data (data for updating
the data (old data) stored in a corresponding region) into a
predetermined region (write region) of a copy-target primary
VOL 1551 ((1) in F1IG. 20), the RAID controller 301 reads the
old data from a physical region (a physical region of the HDD
(SAS) 500 in the example shown in FIG. 20) ((2) in FIG. 20),
which is the basis of the write region of the primary VOL
1551, acquires the old data via the cache 340 ((3) in FIG. 20),
and writes the old data into a copy-destination region of a
snapshot VOL 1553 (a region having the same address as the
write region of the primary VOL 1551) ((4) in FIG. 20). In this
process, the RAID controller 301 writes the old data into the
extent (the logical region of the logical VOL 2012 of the pool
2001) allocated to the copy-destination region of the snapshot
VOL 1553 ((5) in FIG. 20).

Inthe case where a region of the SSD 400 is allocated to the
write-destination extent to which the old data is written (the
extent allocated to the copy-destination region), the RAID
controller 301 designates the write-destination extent, and
transmits a write request for writing the old data to the SSD
400 which is the basis of the region allocated to the write-
destination extent. The old data is transmitted to the SSD 400
via the cache 340 ((6) in FIG. 20). The SSD 400 then stores
the old data in a storage region (one or more pages) of the FM
chip that corresponds to the write-destination extent ((7) in
FIG. 20). New data is stored in the primary VOL 1551 ((8) in
FIG. 20).

FIG. 21 is a diagram for illustrating another example of the
snapshot creation process according to the embodiment.

In (5) shown in FIG. 20, the RAID controller 301 allocates
a new extent from the pool 2001 to the copy-destination
region of the snapshot VOL 1553, and writes the old data to
this extent ((5) in FIG. 21).

FIG. 22 is a diagram for illustrating unnecessary data gen-
erated upon snapshot deletion according to the embodiment.

After the snapshot creation process is executed, there is a
case where, for example, the storage system 1 receives from
the host 200 a request for deleting the snapshot VOL 1553. In
such a case, the RAID controller 301 of the storage system 1
deletes the snapshot VOL 1553 that is requested to be deleted.

US 9,116,622 B2

13
When deleting the snapshot VOL 1553, information and the
like related to the snapshot VOL. 1553, which are managed by
the RAID controller 301, are deleted.

In this case, the plurality of pages of the SSD 400 in which
the old data are stored remain managed as valid pages in
which valid data are stored.

Now, in the present embodiment, the fixed-pattern data
write process described hereinafter is executed as a method
for reducing the number of regions in which unnecessary data
are stored.

FIG. 23 is a diagram for illustrating the fixed-pattern data
write process performed after the snapshot deletion according
to the embodiment.

The fixed-pattern data write process shown in FIG. 23,
which is performed after the snapshot deletion, is similar to
the fixed-pattern data write process shown in FIG. 14, which
is performed after the inter-tier dynamic migration, except
that a write-destination extent to which the fixed-pattern data
is written is taken as the extent allocated to the snapshot VOL
1553.

The fixed-pattern data write process performed after the
snapshot deletion is similar to the aforementioned first to
fourth examples of'the fixed-pattern data write process shown
in FIGS. 1510 18.

In addition, the process using an unmap request, according
to a fifth example shown in FIG. 19, may be executed as
another method for reducing the number of regions in which
unnecessary data are stored.

Next, various tables of the storage system 1 are described in
detail.

FIG. 24 shows an example of the logical-physical conver-
sion table according to the embodiment.

The logical-physical conversion table 110 is a table stored
in the DRAM 11 of the flash memory package 10, and man-
ages records that have the fields of a logical address 110a,
validity 1105, FM number 110¢, block number 1104, page
number 110e, and data pattern 110/

Logical addresses are stored in the logical address 110a. In
the present embodiment, these logical addresses are the logi-
cal addresses of the logical VOLs 2012 of the pool 2001.
However, in place of these logical addresses, logical
addresses of logical spaces of the SSD 400 that correspond to
the logical addresses of the logical VOLs 2012 may be stored
in the logical address 110a. The validity of data of a corre-
sponding logical address, which indicates, for example,
whether the data is valid (present in the flash memory package
10) or invalid (not present in the flash memory package 10) is
stored in the validity 1105. The number of the FM chip 32
(FM number) having the data of the corresponding logical
address stored therein is stored in the FM number 110c. The
number of a block (block number) in the FM chip 32 that has
the data of the corresponding logical address stored therein is
stored in the block number 110d. The number of a page (page
number) in the block that has the data of the corresponding
logical address stored therein is stored in the page number
110e.

The data pattern 110f7is a field that is used when data is not
actually written to a corresponding page in the fixed-pattern
data write process, which is, in other words, a field that is used
when the second and fourth examples of the fixed-pattern data
write process shown in FIGS. 16 and 18 are executed. The
data pattern 110f'may not be provided in other cases. A data
pattern that is used for specifying the data of a corresponding
logical address, or a NULL indicating that there are no data
patterns stored, is stored in the data pattern 110/. When a data
pattern is stored, the data of the corresponding logical address
can be generated based on this data pattern. The size of the

5

10

15

20

25

30

35

40

45

50

55

60

65

14

generated data is an integral multiple of (N times greater than
(where N is an integer of 2 or more)) the size of the data
pattern.

According to the record showing “0x10000000” as the
logical address 110aq in the logical-physical conversion table
110, data of this logical address is stored in a page #0 of a
block #0 of an FM chip #0, and a data pattern is not stored for
this logical address.

The records showing “0x20000000,” “0x20002000,” and
“0x20004000” as the logical address 110a show the states of
corresponding logical addresses that are obtained, for
example, after the execution of the second or fourth example
of'the fixed-pattern data write process (FIG. 16 or FIG. 18). A
page #0 of a block #0 of an FM chip #1 corresponds a region
indicated by each of the logical addresses, and the data pattern
of each of the logical addresses is “0.” Therefore, it is clear
that all bits of the data corresponding to each of the logical
address is “0.”

FIG. 25 shows an example of the physical-logical conver-
sion table according to the embodiment.

The physical-logical conversion table 111 is a table stored
in the DRAM 11 of the flash memory package 10, and man-
ages records that have the fields of an FM number 1114, block
number 1115, page number 111c, state 1114, and logical
address 111e.

The FM number of each FM chip 32 is stored in the FM
number 111a. The number of a block in the FM chip 32 is
stored in the block number 1115. The number of a page in a
corresponding block is stored in the page number 111¢. The
state of a corresponding page is stored in the state 111d. The
state of a page can be “valid,” which indicates that the data
corresponding to a logical address is stored, “invalid,” which
indicates that the data corresponding to a logical address is
not stored, meaning that unnecessary data is stored, and
“blank,” which indicates that no data are stored. The logical
addresses of the logical VOLs 2012 of the pool 2001, which
corresponds to the data stored in the corresponding pages, are
stored in the logical address 111e.

In the present embodiment, the physical-logical conver-
sion table 111 manages a plurality of (e.g., four in FIG. 25)
records for one page. This is because one common page is
allocated to a plurality of partial regions that are obtained by
dividing a logical region having the write data (a plurality of
page sizes) stored therein, with respect to each page size in the
fixed-pattern data write process. By managing the records in
this manner, a correspondence relationship between one page
and a plurality of corresponding partial regions thereof can be
managed properly. The number of records provided for one
page may be determined based on the multiple of the maxi-
mum size of the write data to the page size.

According to the top four records of the physical-logical
conversion table 111, a page #0 of a block #0 of an FM chip
#0 is valid, and only data of a logical address “0x10000000”
is stored therein.

Furthermore, according to the four records with FM chip
#1, block #0 and page #0, it can be seen that the data of logical
addresses “0x20000000,” “0x20002000” and “0x20004000”
are stored in the relevant page. For example, in the fixed-
pattern data write process (FIGS. 15 to 18), in the case where
fixed-pattern data is written, the data are updated to the states
shown by these four records. In this manner, in the case of the
fixed-pattern data, the number of pages associated with a
logical region corresponding to the plurality of page sizes can
be reduced to 1.

FIG. 26 shows an example of the pool management table
according to the embodiment.

US 9,116,622 B2

15

A pool management table 351 is a table stored in, for
example, the shared memory 350 of the RAID controller 301,
and manages records that have the fields of a pool number
351a, device type 3515, logical VOL number 351¢, logical
address 3514, physical VOL number 351e, physical address
351/, and state 351g.

The number of a pool (pool number) of the storage system
1 is stored in the pool number 351a. The type of a physical
VOL (device type) is stored in the device type 3515. The
number of a corresponding logical VOL (logical VOL num-
ber) is stored in the logical VOL number 351¢. The logical
address belonging to the corresponding logical VOL. is stored
in the logical address 351d. The number of a physical VOL
(physical VOL number) that is the basis of a region of the
corresponding logical address is stored in the physical VOL
number 351e. The address of a corresponding physical VOL
(physical address) is stored in the physical address 351f. In
the case where the device type corresponds to a device such as
the SSD that uses the FM chips, NULL is set in the physical
address 351f. The state of the region of the corresponding
logical address is stored in the state 351g. The state stored
therein can be, for example, “valid,” which indicates that the
region of the logical address is allocated to a region of a
virtual VOL, “blank,” which indicates that the region of the
logical address is not allocated to the region of the virtual
VOL, and the like.

According to the top record of the pool management table
351, the region corresponding to a logical address
#0x10000000 of a logical VOL #0x1000 of a pool #0 is based
onan SSD #0 and is allocated to the region of the virtual VOL.

FIG. 27 shows an example of the dynamic region allocation
table according to the embodiment.

A dynamic region allocation table 352 is a table stored in,
for example, the shared memory 350 of the RAID controller
301, and manages records that have the fields ofa virtual VOL
number 352a, host logical address 3525, state 352¢, extent ID
352d, pool number 352¢, logical VOL number 352f, and
logical address 352g.

The number of a virtual VOL (virtual VOL number) for
specifying a virtual VOL is stored in the virtual VOL number
352a. The logical address that belongs to the virtual VOL and
can be recognized by the host (host logical address) is stored
in the host logical address 35256. The state 352¢ has stored
therein information indicating whether or not a region of a
logical VOL is allocated to a region of a corresponding virtual
VOL indicated by the host logical address. For instance, in the
case where the region of the logical VOL is allocated to the
region of the corresponding virtual VOL indicated by the host
logical address, “allocated” is set. In the case where the region
of'the logical VOL is not allocated, “unallocated” is set. The
ID of an extent is stored in the extent ID 3524. The pool
number of a pool is stored in the pool number 352¢. The
logical VOL number of a logical VOL is stored in the logical
VOL number 352f. The address of a region of a logical VOL
(logical address) is stored in the logical address 352g.

According to the top record of the dynamic region alloca-
tiontable 352, an extent #0 (the region indicated by the logical
address #0x10000000" of the logical VOL #0x1000 of the
pool #0) is already allocated to the region corresponding to a
host logical address “0x00000000” of a virtual VOL
“0x0000.”

FIG. 28 shows an example of the dynamic extent region
allocation table according to the embodiment.

A dynamic extent region allocation management table 353
is a table stored in, for example, the shared memory 350 of the
RAID controller 301 and used in the case where an extent, a

10

15

20

25

30

40

45

55

60

65

16

region larger than write data from the host 200, is allocated to
a region for storing the write data from the host 200.

The dynamic extent region allocation management table
353 manages records that have the fields of a virtual VOL
number 353a, host logical address 3535, state 353¢, extent ID
353d, pool number 353e, logical VOL number 353/, and
logical address 353g.

The virtual VOL number for specifying a virtual volume is
stored in the virtual VOL number 353a. The host logical
address belonging to the virtual volume, which can be recog-
nized by the host, is stored in the host logical address 3535.
The state 353¢ has stored therein information indicating
whether or not a region of a logical volume is allocated to a
region of a corresponding virtual volume indicated by the
hostlogical address. For instance, in the case where the region
of the logical volume is allocated to the region of the corre-
sponding virtual volume indicated by the host logical address,
“allocated” is set to the state 353c. In the case where the
region of the logical volume is not allocated, “unallocated” is
set to the state 353¢. The ID of an extent allocated to a
corresponding region is stored in the extent ID 353d. The pool
number of a pool allocated to the corresponding region is
stored in the pool number 353e¢. The logical VOL number of
a logical volume allocated to the corresponding region is
stored in the logical VOL number 353/. The logical address of
the logical volume allocated to the corresponding region is
stored in the logical address 353g.

According to the top record of the dynamic extent region
allocation management table 353, the extent #0 (the region
indicated by the logical address #0x10000000" of the logical
VOL #0x1000 of the pool #0) is already allocated to the
region corresponding to the host logical address
“0x00000000” of the virtual VOL “0x0000.”

When allocating a region using the dynamic extent region
allocation management table 353, in the case of the virtual
VOL number “0x0000” and host logical address
“0x00002000,” the RAID controller refers to the record
showing virtual VOL number “0x0000” and host logical
address “0x00000000,” and determines a logical VOL having
pool number “0” and logical VOL number “0x0000” as a
destination of allocation. The RAID controller further deter-
mines, as a logical address of a logical volume to be allocated
to a region corresponding to a virtual volume, an address
“0x10002000” that is obtained by adding “0x00002000,”
which is a difference between the allocation target host logi-
cal address “0x00002000” and the host logical address
“0x00000000” of the record, to the logical address
“0x10000000” of the record.

FIG. 29 shows an example of the access frequency table
according to the embodiment.

An access frequency table 354 is a table stored in, for
example, the shared memory 350 of the RAID controller 301,
and manages records that have the fields of a virtual VOL
number 354a, host logical address 3545, current device type
354c¢, and access frequency 3544.

The virtual VOL number for specifying a virtual volume is
stored in the virtual VOL number 354a. The host logical
address belonging to the virtual volume, which can be recog-
nized by the host, is stored in the host logical address 3544.

The device type of a storage region that is currently allo-
cated to a region of a corresponding host logical address is
stored in the current device type 354¢. Information on the
frequency of access to the region of the corresponding host
logical address is stored in the access frequency 354d. In the
present embodiment, the information on access frequency is
set as “high,” “medium,” and “low,” in descending order of
access frequency. In the present embodiment, in the case

US 9,116,622 B2

17

where the access frequency is “high,” data needs to be moved
to a tier configured by the extent of the SSD 400, and in the
case where the access frequency is “medium,” data needs to
be moved to a tier configured by the extent of the HDD (SAS)
500. In the case where the access frequency is “low,” data
needs to be moved to a tier configured by the extent of the
HDD (SATA) 600. Note that in the access frequency table
354, on top of the access frequency or in place of the access
frequency, the RAID controller may manage a last access
time and/or a data storage time and determine which one of
these values and which data of the extents to move to an extent
of a certain tier.

According to the top record of the access frequency table
354, aregionofa current SSD device is allocated to the region
corresponding to the virtual VOL number “0x0000” and the
host logical address “0x00000000,” and the frequency of
access to this region is “low.”

FIG. 30 shows an example of the pair management table
according to the embodiment.

A pair management table 355 is a table stored in, for
example, the shared memory 350 of the RAID controller 301,
and manages records that have the fields of a primary VOL
number 355q, validity 3555, 1D 355¢, and snapshot VOL
number 355d.

The number of a primary VOL (primary VOL number) for
creating a snapshot is stored in the primary VOL number
355a. The validity indicating whether a copy of a correspond-
ing record is valid or not is stored in the validity 3555b. The
number (ID) for identifying a snapshot is stored in the ID
355c¢. A plurality of snapshots can be created based on the
same primary volume, and the snapshots (generations of the
snapshots) can be identified based on the numbers. The num-
bers may be equivalent to, for example, the values of the
generations. The number of a snapshot VOL (snapshot VOL
number) is stored in the snapshot VOL number 3554.

According to the top record of the pair management table
355, a snapshot for primary VOL number “0Ox1000” is stored
in a virtual volume corresponding to snapshot VOL number
“0x1001,” and the number of this snapshot is “0,” which
means that this snapshot is valid.

FIG. 31 shows an example of the snapshot data allocation
table according to the embodiment.

A snapshot data allocation table 356 is a table stored in, for
example, the shared memory 350 of the RAID controller 301,
and manages records that have the fields of a snapshot VOL
number 3564, host logical address 3564, state 356¢, pool
number 3564, logical VOL number 356¢, and logical address
356/

The snapshot VOL number of a snapshot volume in which
a snapshot is stored is stored in the snapshot VOL number
356a. The host logical address belonging to a virtual volume,
which can be recognized by the host, is stored in the host
logical address 3565. The state 356¢ has stored therein infor-
mation indicating whether or not a logical volume is allocated
to a region indicated by a corresponding host logical address.
For instance, in the case where a region of a logical volume is
allocated to the region of a corresponding virtual volume
indicated by the host logical address, “allocated” is set in the
state 356¢. In the case where the region of the logical volume
is not allocated, “unallocated” is set. The pool number of a
pool allocated to the corresponding region is stored in the
pool number 356d. The logical VOL number of a logical
volume allocated to the corresponding region is stored in the
logical VOL number 356¢. The logical address of the logical
volume allocated to the corresponding region is stored in the
logical address 356/

20

25

30

40

45

50

18

Next, processes performed by the storage system accord-
ing to the present embodiment are described in detail with
reference to the flowcharts.

FIG. 32 shows an example of a flowchart of a write process
according to the embodiment.

The write process is executed in the case where the FM
controller 20 of the flash memory package 10 of the SSD 400
receives from the RAID controller 301a write request for
writing data to a region indicated by a predetermined logical
address (referred to as “designated logical address™ in the
description of FIG. 32).

Once the FM controller 20 receives the write request from
the RAID controller 301, the FM controller 20 searches the
physical-logical conversion table 111 for blank pages (step
S1), allocates any of the blank pages to a page for storing data,
stores corresponding data therein, and updates the FM num-
ber 110c¢, the block number 1104, and the page number 110e
of'the records corresponding to the designated logical address
in the logical-physical conversion table 110, to values corre-
sponding to the allocated page (step S2). Subsequently, the
FM controller 20 refers to the physical-logical conversion
table 111 to determine whether the state 1114 of the record in
which the value of the logical address 111e indicates the
designated logical address, is “valid” or not (step S3).

In the case where the state is “valid” (YES in step S3), the
data of the page (physical region) shown by the record is data
obtained prior to rewriting (old data) and hence invalid data.
Therefore, the FM controller 20 changes the state 1114 of the
corresponding record from “valid” to “invalid” (step S4), and
advances the process to step S5. As a result, the page storing
the data of the designated logical address is managed as an
invalid page. In the case where the state is not “valid” (NO in
step S3), the FM controller 20 advances the process to step
Ss.

In step S5, the FM controller 20 changes the state 111d of
the record in the physical-logical conversion table 111, which
corresponds to the page allocated in step S2, from “blank” to
“valid” (step S5), changes the validity 1105 of the record in
the logical-physical conversion table 110, which corresponds
to the designated logical address, to “valid,” and then ends the
process.

Next is described a block erase process for erasing data of
a block in the FM chip 32 of the SSD 400.

FIG. 33 shows an example of a flowchart of the block erase
process according to the embodiment.

The block erase process is executed by the FM controller
20 when, for example, the FM controller 20 detects the deple-
tion of a capacity available in the FM chip 32. Depletion of a
capacity means that the number of empty blocks becomes less
than a predetermined ratio (predetermined number). The
capacity depletion may be detected by any unit. Furthermore,
the block erase process may be executed on a regular basis by
the FM controller 20 every predetermined time interval.

The FM controller 20 specifies a physical block number to
be processed (step S10). The physical block number to be
processed may be the number of a block following a block
subjected to a previous block erase process.

Next, the FM controller 20 refers to the record correspond-
ing to the specified physical block number in the physical-
logical conversion table 111, to determine whether the state
111d of the record is invalid or not, or, in other words, whether
the corresponding page is invalid or not (step S11). In the case
where the corresponding page is not invalid (NO in step S11),
it means that a valid page exists in the block and that therefore
the block cannot be erased. Thus, the FM controller 20 ends
the block erase process.

US 9,116,622 B2

19

On the other hand, in the case where the corresponding
page is invalid (YES in step S11), the FM controller 20
determines whether or not there exists a subsequent record
corresponding to the block (step S12).

As a result of the determination, in the case where there
exists a subsequent record corresponding to the block (YES in
step S12), the state of the same page or the subsequent page
needs to be confirmed. Therefore, the FM controller 20
advances the process to step S11. On the other hand, in the
case where there does not exist any subsequent record corre-
sponding to the block (NO in step S12), it means that all of the
pages of the block are invalid. Thus, the FM controller 20
erases the data of the block (step S13).

The FM controller 20 then updates the physical-logical
conversion table 111 (step S14) and ends the process. More
specifically, the FM controller 20 changes the states 1114 on
the physical-logical conversion table 111 that correspond to
the records of all of the pages of the block from which the data
are erased, to “blank.” Consequently, the free capacity of the
FM chip 32 can be increased.

Next is described a reclamation process, a process for
generating a block that can be subjected to the erase process.

FIG. 34 shows an example of a flowchart of the reclamation
according to the embodiment.

Reclamation is executed by the FM controller 20 when, for
example, the FM controller 20 detects the depletion of a
capacity available in the FM chip 32. Depletion of a capacity
means that the number of empty blocks becomes less than a
predetermined ratio (predetermined number). The capacity
depletion may be detected by any unit. Furthermore, the
reclamation may be executed on a regular basis by the FM
controller 20 every predetermined time interval.

The FM controller 20 specifies a physical block number of
a destination block (also referred to as “reclamation-destina-
tion block™) to which a valid page is to be stored (step S21).
The reclamation-destination block may be, for example, a
block with no invalid pages and many blank pages.

Next, the FM controller 20 specifies a physical block num-
ber of a source block (also referred to as “reclamation-source
block™) from which the valid page is moved (step S22). The
reclamation-source block may be, for example, a block with
no blank pages and with a predetermined number or few valid
pages.

The FM controller 20 then determines whether the recla-
mation-source block has a valid page or not (step S23). When
there are no valid pages as a result of the determination (NO
in step S23), the FM controller 20 advances the process to step
S22.

When, on the other hand, the reclamation-source block has
a valid page (YES in step S23), the FM controller 20 copies
the data stored in this valid page (copy-source page) to a page
of' the reclamation-destination block (copy-destination page)
(step S24), and updates the logical-physical conversion table
110 and the physical-logical conversion table 111 (step S25).
More specifically, the FM controller 20 sets the state 111d on
the physical-logical conversion table 111 that corresponds to
the record of the copy-source page to “invalid,” its logical
address 111e to “NULL),” the state 1114 of the record corre-
sponding to the copy-destination page to “valid,” and its
logical address 111e to a logical address stored in the logical
address 111e of the copy source. The FM controller 20 further
sets the FM number, the block number, and the page number
of the copy-destination page with respect to the records with
a set copy-source page on the logical-physical conversion
table 110.

Subsequently, the FM controller 20 determines whether
the reclamation-destination block has a blank page or not

10

15

20

25

30

35

40

45

50

55

60

65

20
(step S26). In the case where the reclamation-destination
block has a blank page (YES in step S26), the FM controller
20 advances the process to step S23. In the case where the
reclamation-destination block has no blank pages (NO in step
S26), the FM controller 20 ends the reclamation process.

This reclamation process can generate a block in which all
of the pages are invalid, and the block erase process can
change the block into an empty block and increase the free
capacity of the FM chip.

Next, the dynamic region allocation process is described in
detail. The dynamic region allocation process is the process
shown in FIG. 11.

FIG. 35 shows an example of a flowchart of the dynamic
region allocation process according to the embodiment.

Once the RAID controller 301 receives from the host 200 a
write request for writing data (write data) (step S31), the
RAID controller 301 determines whether the state 352¢ of the
record corresponding to the host logical address of the virtual
VOL number designated based on the write request in the
dynamic region allocation table 352, is “unallocated” or not.
In other words, the RAID controller 301 determines whether
an extent is allocated to the corresponding region or not (step
S32).

In the case where the state 352¢ of the record does not
indicate “unallocated” (NO in step S32), it means that an
extent is allocated to the region. Therefore, the RAID con-
troller 301 advances the process to step S35.

In the case where the state 352¢ of the record indicates
“unallocated” (YES in step S32), it means that no extents are
allocated to the region. Therefore, the RAID controller 301
specifies, from the pool management table 351, a record that
shows that the device type 35154 is the SSD and that the state
351g is “blank.” The RAID controller 301 also allocates, as
the write-destination extent, an extent corresponding to the
logical address shown by the logical address 3514, the extent
belonging to the logical volume having the logical VOL num-
ber shown by the logical VOL number 351¢ of the record (step
S33), and updates the dynamic region allocation table 352
based on the allocation (step S34). More specifically, the
RAID controller 301 sets values corresponding to the allo-
cated extent, in the pool number 352¢, the logical volume
number 352f, and the logical address 352g of the record on the
dynamic region allocation table 352, and sets the state 352¢ to
“allocated.” The RAID controller 301 thereafter advances the
process to step S35.

In step S35, the RAID controller 301 designates the logical
VOL number and the logical address that indicate the allo-
cated extent, and transmits to the FM controller 20 a write
request for writing the write data into the SSD 400, and
thereby writes the data into the SSD 400 (step S35). Note that
the FM controller 20 of the SSD 400 executes the write
process shown in FIG. 32 upon reception of the write request.

Next, the dynamic extent region allocation process is
described in detail. The dynamic extent allocation process is
the process shown in FIG. 12.

FIG. 36 shows an example of a flowchart of the dynamic
extent region allocation process according to the embodi-
ment.

Once the RAID controller 301 receives from the host 200 a
write request for writing data (write data) (step S41), the
RAID controller 301 refers to the dynamic extent region
allocation table 353 to determine whether the state 353¢ cor-
responding to the write-destination region indicates “unallo-
cated” or not. In other words, the RAID controller 301 deter-
mines whether an extent is allocated to the write-destination
region or not (step S42).

US 9,116,622 B2

21

In the case where the state 353¢ of the record does not
indicate “unallocated” (NO in step S42), it means that an
extent is allocated to the write-destination region. Therefore,
the RAID controller 301 advances the process to step S45.

On the other hand, in the case where the state 353¢ of the
record indicates “unallocated” (YES in step S42), it means
that no extents are allocated to the write-destination region.
Therefore, the RAID controller 301 specifies, from the pool
management table 351, a plurality of records that show that
the device type 3515 is the SSD and that the state 351g is
“blank.” The RAID controller 301 also allocates extents cor-
responding to the logical addresses shown by the logical
address 351d, the extents belonging to the logical volumes
having the logical VOL numbers shown by the logical VOL
number 351c¢ of the records (step S43), and updates the
dynamic extent region allocation table 353 based on the allo-
cation (step S44). More specifically, the RAID controller 301
sets values corresponding to the allocated extents, in the pool
number 353e¢, the logical volume number 353/, and the logical
address 353g of the records on the dynamic extent region
allocation table 353, and sets the state 353¢ to “allocated.”
The RAID controller 301 thereafter advances the process to
step S45.

In step S45, the RAID controller 301 designates the logical
VOL numbers and the logical addresses corresponding to the
logical addresses of the virtual VOL numbers, which indicate
the allocated extents, and transmits to the FM controller 20 a
write request for writing the write data into the SSD 400, and
thereby writes the data into the SSD 400 (step S45). For
example, in the case where the virtual VOL number is
“0x0000” and the host logical address is “0x00002000,” the
RAID controller 301 refers to the record showing virtual VOL
number “0x0000” and host logical address “0x00000000,”
and determines the logical volume with pool number “0”” and
logical VOL number “0x0000” as a destination of allocation.
The RAID controller 301 also determines the address
“0x10002000”, which is obtained by adding a difference
“0x00002000” between the host logical address
“0x00002000” to be allocated and the host logical address
“0x00000000” of the record to the logical address
“0x10000000” of the record, as the logical address of the
logical volume allocated to the virtual volume. Note that the
FM controller 20 of the SSD 400 executes the write process
shown in FIG. 32 upon reception of the write request.

Next, the inter-tier dynamic migration is described in
detail. The inter-tier dynamic migration is the process shown
in FIG. 13.

FIG. 37 shows an example of a flowchart of the inter-tier
dynamic migration according to the embodiment.

The inter-tier dynamic migration is executed on a regular
basis, for example. The RAID controller 301 acquires one
record from the access frequency table 354, and determines
whether the current device type 354¢ in which is stored the
data ofthe region of the virtual volume indicated by the record
(atarget virtual volume region) is the SSD (the device type of
the SSD 400) or not (step S51). In the case where the device
typeis notthe SSD (NO in step S51), the RAID controller 301
ends the inter-tier dynamic migration.

On the other hand, in the case where the device type is the
SSD (YES in step S51), the RAID controller 301 determines
whether the access frequency 354d of the corresponding
record indicates “medium” or not (step S52). In the case
where the access frequency 3544 does not indicate “medium”
(NO in step S52), the RAID controller 301 advances the
process to step S57.

On the other hand, in the case where the access frequency
354d indicates “medium” (YES in step S52), the RAID con-

10

15

20

25

30

35

40

45

50

55

60

65

22

troller 301 detects an empty extent of the HDD (SAS) 500
from the pool management table 351, allocates the empty
extent as the destination extent (step S53), reads the data
corresponding to the target virtual volume region from the
SSD 400, and moves the data to the allocated extent of the
HDD (SAS) 500 (step S54). Subsequently, the RAID control-
ler 301 transmits an unnecessary reduction request for reduc-
ing the number of pages corresponding to an unnecessary
region (the source extent, in this example), which is a region
in which data unnecessary to the host is stored, to the SSD 400
having a page allocated to the unnecessary region (step S55).
The unnecessary reduction request is, for example, a write
request for writing the fixed-pattern data or an unmap request.
The write request for writing the fixed-pattern data may be a
write request that includes the fixed-pattern data of the write
data size, or a write request that includes the partial data
equivalent to the size of one page in the fixed-pattern data and
the size information indicating the size of the fixed-pattern
data. In the case where the unnecessary region belongs to a
plurality of SSDs 400, the RAID group 301 transmits the
unnecessary reduction request to the plurality of SSDs 400.
Note that the FM controller 20 receiving the unnecessary
reduction request executes any of the processes shown in
FIGS. 40 to 44, as will be described hereinafter, and most of
the unnecessary data in the flash memory package 10 become
invalid data.

Next, the RAID controller 301 updates the dynamic region
allocation table 352 and the access frequency table 354 (Step
S56). More specifically, the RAID controller 301 sets values
corresponding to the region of the HDD (SAS), which is
allocated as the destination region, in the pool number 352e,
the logical VOL number 352f, and the logical address 352g of
the dynamic region allocation table 352, which correspond to
the record of the target virtual volume region. The RAID
controller 301 also sets “SAS” in the current device type 354¢
of'the access frequency table 354 for the record correspond-
ing to the target virtual volume region. The RAID controller
301 thereafter ends the inter-tier dynamic migration.

In step S57, the RAID controller 301 determines whether
the access frequency 3544 of the corresponding record indi-
cates “low” or not (step S57). In the case where the access
frequency 3544 does not indicate “low” (NO in step S57), the
RAID controller 301 ends the inter-tier dynamic migration.

On the other hand, in the case where the access frequency
354d indicates “low” (YES in step S57), the RAID controller
301 detects an empty extent of the HDD (SATA) 600 from the
pool management table 351, allocates the empty extent as the
destination extent (step S58), reads the data corresponding to
the target virtual volume region from the SSD 400, and moves
the data to the region of the HDD (SATA) 600 which corre-
sponds to the allocated extent (step S59). The RAID control-
ler 301 then transmits the unnecessary reduction request to
the SSD 400 that is the basis of the source extent (step S60).

Subsequently, the RAID controller 301 updates the
dynamic region allocation table 352 and the access frequency
table 354. More specifically, the RAID controller 301 sets
values for the region of the HDD (SATA) 600 which is allo-
cated as the destination region, in the pool number 352¢, the
logical VOL number 352f, and the logical address 352g of the
dynamic region allocation table 352 for the record corre-
sponding to the target virtual volume region, and sets “SATA”
as the current device type 354¢ of the access frequency table
354, for the record corresponding to the target virtual volume
region. Thereafter, the RAID controller 301 ends the inter-tier
dynamic migration.

US 9,116,622 B2

23

Next, the snapshot creation process is described in detail.
The snapshot creation process is the process shown in FIG.
21.

FIG. 38 shows an example of a flowchart of the snapshot
creation process according to the embodiment.

Upon reception of a write request for data (write data: new
data) from the host 200 (step S71), the RAID controller 301
refers to the pair management table 355 to determine whether
the virtual VOL number designated by the write request is
registered as the primary VOL number 355a or not, and
searches for a record showing “valid” as the validity 3554, to
determine whether the data needs to be copied to the snapshot
volume or not (step S72).

In the case where the data does not need to be copied (NO
in step S72), the RAID controller 301 advances the process to
step S76. On the other hand, in the case where the data needs
to be copied (YES in step S72), the RAID controller 301
stages the stored data (old data) from the region of the SSD
400 to the cache 340, the region corresponding to the extent
allocated to the region of the virtual volume (primary volume)
designated by the write request (step S73).

The RAID controller 301 then acquires the snapshot VOL
number from the record searched from the pair management
table 355 in step S72, specifies a snapshot volume, and copies
the old data from the primary volume to the snapshot volume
between the caches 340 (step S74).

Thereafter, the RAID controller 301 de-stages the old data
from the cache 340 to the physical region allocated to the
snapshot volume (the storage region of the FM chip 32 of the
SSD 400, in this example) (step S75), and advances the pro-
cess to step S76. In step S76, the RAID controller 301 writes
the new data into the region corresponding to the primary
volume (step S76), and ends the process.

Next, the snapshot deletion process is described in detail.
The snapshot deletion process is the process shown in FIG.
23.

FIG. 39 shows an example of a flowchart of a snapshot
deletion process according to the embodiment.

Upon reception of a request for deleting a snapshot, from
the host 200 (a snapshot deletion request) (step S81), the
RAID controller 301 specifies records corresponding to the
pair management table 355 on the basis of the primary VOL
number and the ID that are included in the snapshot deletion
request, specifies the snapshot VOL numbers, and changes
the validity 3555 corresponding to each of the records to
“invalid” (step S82).

Next, the RAID controller 301 specifies, from the snapshot
data allocation table 356, one unprocessed record from
among the records having the specified snapshot VOL num-
bers stored therein, and determines whether or not the state
356c¢ of this record indicates “allocated.” In other words, the
RAID controller 301 determines whether a region of the pool
is allocated to the snapshot volume corresponding to the
snapshot VOL number (step S83).

In the case where the region of the pool is not allocated, that
is, in the case where the state 356¢ indicates “unallocated”
(NO in step S83), it means that the data of the snapshot
volume is not stored in the SSD 400. Therefore, the RAID
controller 301 ends the snapshot deletion process.

In the case where the region of the pool is allocated, that is,
in the case where the state 356¢ indicates “allocated” (YES in
step S83), it means that the data of the snapshot volume (i.e.,
unnecessary data) is stored in the SSD 400. Therefore, the
RAID controller 301 acquires the pool number, the logical
VOL number, and the logical address from the record, speci-
fies a corresponding record from the pool management table
351 by using the pool number, the logical VOL number and

10

15

20

25

30

35

40

45

50

55

60

65

24

the logical address, and transmits the unnecessary reduction
request to the flash memory package 10 of the SSD 400
corresponding to the physical VOL number of the specified
record (step S84). The unnecessary reduction request is, for
example, a write request for writing the fixed-pattern data or
an unmap request. The write request for writing the fixed-
pattern data may be a write request that includes the fixed-
pattern data of the write data size, or a write request that
includes the partial data equivalent to the size of one page in
the fixed-pattern data and the size information indicating the
size of the fixed-pattern data. Note that the FM controller 20
of'the flash memory package 10 that receives the unnecessary
reduction request executes any of the processes shown in
FIGS. 40 to 44, as will be described hereinafter, and the
amount of unnecessary data in the flash memory package is
reduced.

Subsequently, the RAID controller 301 deletes the record
specified in step S83 from the snapshot data allocation table
356, changes the state 351g of the specified record to “blank”
in the page management table 351 (step S85), advances the
process to step S83, and repeatedly executes the similar pro-
cess on other regions of the snapshot volume.

The snapshot deletion process described above can reduce
the amount of data (unnecessary data) of the snapshot volume
that is subjected to deletion of snapshots stored in the SSD
400.

Next, examples of the processes performed by the FM
controller 20 receiving the unnecessary reduction request are
described in detail with reference to FIGS. 40 to 44.

FIG. 40 shows an example of a flowchart of the first
example of the fixed-pattern data write process according to
the embodiment.

The first example of the fixed-pattern data write process is
the fixed-pattern data write process shown in FIG. 15.

Suppose, in this example, that the RAID controller 301
transmits a write request for writing the fixed-pattern data
1051 of the size of write data (e.g., 24 KB) into a region of a
logical volume.

Upon reception of the write request transmitted by the
RAID controller 301 (step S91), the FM controller 20 of the
flash memory package 10 of the SSD 400 determines whether
data (the write data) requested to be written is the fixed-
pattern data or not (step S92).

Inthe case where the write data is not the fixed-pattern data
(NO in step S92), the FM controller 20 ends the fixed-pattern
data write process. Note that a normal data write process is
executed on this data.

On the other hand, in the case where the write data is the
fixed-pattern data (YES in step S92), the FM controller 20
refers to the physical-logical conversion table 111 to search
for a blank page (step S93), and writes data equivalent to the
size of one page of the fixed-pattern data to the obtained blank
page (write-destination shared page) (step S94). The FM
controller 20 then updates the logical-physical conversion
table 110 and the physical-logical conversion table 111 (step
S95).

More specifically, the FM controller 20 invalidates the state
111d for the records corresponding to a plurality of pages
(e.g., three pages) associated with the logical address belong-
ing to the write-target logical region in the physical-logical
conversion table 111. As a result, the plurality of pages allo-
cated to the write-target logical region are managed as invalid
pages. Thus, that data of the pages are prevented from being
copied to other pages upon reclamation or refreshing, and the
pages can be used as blank pages after a subsequent block
erase process. In the case where all pages of the block includ-
ing the pages are invalid, then the block is erased and all of the

US 9,116,622 B2

25

pages of the block may be changed to blank pages. In this
manner, the free capacity can be increased rapidly.

Furthermore, the FM controller 20 sets the state 111d of
each of the plurality of (three, in this example) records cor-
responding to the write-destination shared page in the physi-
cal-logical conversion table 111 to “valid,” and sets a logical
address for each of partial regions that are obtained by divid-
ing the write-target logical region according to the page size,
for the logical address 111e of each of the records. Conse-
quently, the partial regions obtained by dividing the write-
target logical region according to the page size are allocated
to one page (write destination shared page) and managed.

The FM controller 20 also sets the FM number 110¢, the
block number 1104 and the page number 110ffor the plurality
of (three, in this example) records corresponding to the logi-
cal address indicating the write-target logical region in the
logical-physical conversion table 110, at values correspond-
ing to the write-destination shared page. As a result, the data
stored in the write-target logical region can be acquired from
one page (the write-destination shared page). This can be
realized based on the characteristics that the plurality of par-
tial data equivalent to the page size in the fixed-pattern data
are the same.

Subsequent to step S95, the FM controller 20 ends the
process.

FIG. 41 shows an example of a flowchart of the second
example of the fixed-pattern data write process according to
the embodiment.

The second example of the fixed-pattern data write process
is the fixed-pattern data write process shown in FIG. 16.

Suppose, in this example, that the RAID controller 301
transmits a write request for writing the fixed-pattern data
1051 of the size of write data (e.g., 24 KB) into a region of a
logical volume.

Upon reception of the write request transmitted by the
RAID controller 301 (step S101), the FM controller 20 of the
flash memory package 10 of the SSD 400 determines whether
data (the write data) requested to be written is the fixed-
pattern data or not (step S102).

In the case where the write data is not the fixed-pattern data
(NO in step S102), the FM controller 20 ends the fixed-
pattern data write process. Note that a normal data write
process is executed on this data.

On the other hand, in the case where the write data is the
fixed-pattern data (YES in step S102), the FM controller 20
refers to the physical-logical conversion table 111 to search
for a blank page and acquires the blank page (the write-
destination shared page) (step S103). The FM controller 20
then updates the logical-physical conversion table 110 and
the physical-logical conversion table 111 (step S104).

More specifically, the FM controller 20 invalidates the state
111d for the records corresponding to a plurality of pages
(e.g., three pages) associated with the logical address belong-
ing to the write-target logical region in the physical-logical
conversion table 111. As a result, the plurality of pages allo-
cated to the write-target logical region are managed as invalid
pages. Thus, that data of the pages are prevented from being
copied to other pages upon reclamation or refreshing, and the
pages can be used as blank pages after a subsequent block
erase process. In the case where all pages of the block includ-
ing the pages are invalid, then the block is erased and all of the
pages of the block may be changed to blank pages. In this
manner, the free capacity can be increased rapidly.

Furthermore, the FM controller 20 sets the state 111d of
each of the plurality of (three, in this example) records cor-
responding to the write-destination shared page in the physi-
cal-logical conversion table 111 to “valid,” and sets a logical

10

15

20

25

30

35

40

45

50

55

60

65

26

address for each of partial regions that are obtained by divid-
ing the write-target logical region according to the page size,
for the logical address 111e of each of the records. Conse-
quently, the partial regions obtained by dividing the write-
target logical region according to the page size are allocated
to one page (write destination shared page) and managed.

The FM controller 20 also sets the FM number 110¢, the
block number 1104 and the page number 110ffor the plurality
of (three, in this example) records corresponding to the logi-
cal address indicating the write-target logical region in the
logical-physical conversion table 110, at values correspond-
ing to the write-destination shared page, and stores pattern
data (“0,” in this example) for specifying the fixed-pattern
data, in the data pattern 110f. As a result, the data stored in the
write-target logical region can be associated with one page
(the write-destination shared page). This can be realized
based on the characteristics that the plurality of partial data
equivalent to the page size in the fixed-pattern data are the
same. In the case where a read request for reading the data of
the corresponding logical region is received, one page of the
fixed-pattern data is created based on the pattern data stored in
the data pattern 110f of one record, and the entire fixed-
pattern data is created based on a plurality of records.

Subsequent to step S104, the FM controller 20 ends the
process.

FIG. 42 shows an example of a flowchart of the third
example of the fixed-pattern data write process according to
the embodiment.

The third example of the fixed-pattern data write process is
the fixed-pattern data write process shown in FIG. 17.

Suppose, in this example, that the RAID controller 301
transmits a write request that includes the partial data of page
size obtained by dividing the fixed-pattern data 1051 and the
size information indicating the total size of the fixed-pattern
data 1051, as a request for writing the fixed-pattern data 1051
of the size of the write data (e.g., KB) into the region of the
logical volume (the write request with fixed-pattern data
instruction). Therefore, the amount of data transmitted from
the RAID controller 301 to the SSD 400 can be reduced.

Upon reception of the write request with fixed-pattern data
instruction transmitted by the RAID controller 301 (step
S111), the FM controller 20 of the flash memory package 10
of'the SSD 400 refers to the physical-logical conversion table
111 to search for a blank page (step S112), and writes data
equivalent to the size of one page of the fixed-pattern data to
the obtained blank page (write-destination shared page) (step
S113). The FM controller 20 then updates the logical-physi-
cal conversion table 110 and the physical-logical conversion
table 111 (step S114).

More specifically, the FM controller 20 specifies the write-
target logical region based on the size information included in
the write request, and invalidates the state 1114 for the
records corresponding to a plurality of pages (e.g., three
pages, in this example) associated with the logical address
belonging to the write-target logical region in the physical-
logical conversion table 111. As aresult, the plurality of pages
allocated to the write-target logical region are managed as
invalid pages. Thus, the data of the pages are prevented from
being copied to other pages upon reclamation or refreshing,
and the pages can be used as blank pages after a subsequent
block erase process. In the case where all pages of the block
including the pages are invalid, then the block is erased and all
of the pages of the block may be changed to blank pages. In
this manner, the free capacity can be increased rapidly.

Furthermore, the FM controller 20 sets the state 111d of
each of the plurality of (three, in this example) records cor-
responding to the write-destination shared page in the physi-

US 9,116,622 B2

27

cal-logical conversion table 111 to “valid,” and sets a logical
address for each of pages that are obtained by dividing the
write-target logical region according to the page size, for the
logical address 111e of each of the records. Consequently, the
partial regions obtained by dividing the write-target logical
region according to the page size are allocated to one page
(write destination shared page) and managed.

The FM controller 20 also sets the FM number 110¢, the
block number 1104 and the page number 110ffor the plurality
of (three, in this example) records corresponding to the logi-
cal address indicating the write-target logical region in the
logical-physical conversion table 110, at values correspond-
ing to the write-destination shared page. As a result, the data
stored in the write-target logical region can be acquired from
one page (the write-destination shared page). This can be
realized based on the characteristics that the plurality of par-
tial data equivalent to the page size in the fixed-pattern data
are the same.

FIG. 43 shows an example of a flowchart of the fourth
example of the fixed-pattern data write process according to
the embodiment.

The fourth example of the fixed-pattern data write process
is the fixed-pattern data write process shown in FIG. 18.

Suppose, in this example, that the RAID controller 301
transmits a write request that includes the partial data of page
size obtained by dividing the fixed-pattern data 1051 and the
size information indicating the size of the fixed-pattern data
1051, as a request for writing the fixed-pattern data 1051 of
the size of the write data (e.g., 24 KB) into the region of the
logical volume (the write request with fixed-pattern data
instruction). Therefore, the amount of data transmitted from
the RAID controller 301 to the SSD 400 can be reduced.

Upon reception of the write request with fixed-pattern data
instruction transmitted by the RAID controller 301 (step
S121), the FM controller 20 of the flash memory package 10
of'the SSD 400 refers to the physical-logical conversion table
111 to search for a blank page, and acquires the blank page
(the write-destination shared page) (step S122). The FM con-
troller 20 then updates the logical-physical conversion table
110 and the physical-logical conversion table 111 (step
S123).

More specifically, the FM controller 20 specifies the write-
target logical region based on the size information included in
the write request, and invalidates the state 1114 for the
records corresponding to a plurality of pages (e.g., three
pages, in this example) associated with the logical address
belonging to the write-target logical region in the physical-
logical conversion table 111. As a result, the plurality of pages
allocated to the write-target logical region are managed as
invalid pages. Thus, the data of the pages are prevented from
being copied to other pages upon reclamation or refreshing,
and the pages can be used as blank pages after a subsequent
block erase process. In the case where all pages of the block
including the pages are invalid, then the block is erased and all
of the pages of the block may be changed to blank pages. In
this manner, the free capacity can be increased rapidly.

Furthermore, the FM controller 20 sets the state 111d of
each of the plurality of (three, in this example) records cor-
responding to the write-destination shared page in the physi-
cal-logical conversion table 111 to “valid,” and sets a logical
address for each of the plurality of partial regions that are
obtained by dividing the write-target logical region according
to the page size, for the logical address 111e of each of the
records. Consequently, the plurality of partial regions
obtained by dividing the write-target logical region according
to the page size are allocated to one page (write destination
shared page) and managed.

10

15

20

25

30

35

40

45

50

55

60

65

28

The FM controller 20 also sets the FM number 110¢, the
block number 1104 and the page number 110ffor the plurality
of (three, in this example) records corresponding to the logi-
cal address indicating the write-target logical region in the
logical-physical conversion table 110, at values correspond-
ing to the write-destination shared page, and stores pattern
data (“0,” in this example) for specifying the fixed-pattern
data, in the data pattern 110f. As a result, the data stored in the
write-target logical region can be associated with one page
(the write-destination shared page). This can be realized
based on the characteristics that the plurality of partial data
equivalent to the page size in the fixed-pattern data are the
same. In the case where a read request for reading the data of
the corresponding logical region is received, one page of the
fixed-pattern data is created based on the pattern data stored in
the data pattern 110f of one record, and the entire fixed-
pattern data is created based on a plurality of records.

FIG. 44 shows an example of a flowchart of the unmap
request process according to the embodiment.

Upon reception of an unmap request transmitted by the
RAID controller 301 (S131), the FM controller 20 of the flash
memory package 10 of the SSD 400 specifies a range of
storage regions of a corresponding logical address (invalida-
tion region) based on the values of the logical address 1902
and the data length 1903 of the unmap request 1901 (step
S132), and updates the logical-physical conversion table 110
and the physical-logical conversion table 111 (step S133).

More specifically, the FM controller 20 sets the state 111d
for the plurality of records associated with the logical
addresses indicating the regions belonging to the invalidation
range in the physical-logical conversion table 111, to
“invalid.” As a result, the plurality of pages belonging to the
invalidation region are managed as invalid pages. Thus, that
data of the pages are prevented from being copied to other
pages upon reclamation or refreshing, and the pages can be
used as blank pages after a subsequent block erase process.

The FM controller 20 further sets the state 111d for the
records corresponding to the logical addresses indicating the
regions belonging to the invalidation range in the logical-
physical conversion table 110, to “invalid.” Thus, the logical
addresses of the regions belonging to the invalidation range
are managed as the addresses to which no pages are allocated.

This unmap request process can set the pages in which the
unnecessary data are stored as invalid pages, and use these
pages as blank pages after the subsequent block erase process.

The above has described an embodiment, the present
invention is not limited thereto, and various changes can be
made without departing from the scope of the present inven-
tion.

For instance, in the embodiment described above, the
NAND-type flash memory is adopted as an example of a
nonvolatile semiconductor memory, but the nonvolatile semi-
conductor memory is not limited thereto. For example, the
nonvolatile semiconductor memory may be a phase-change
memory.

Furthermore, the embodiment has described the inter-tier
dynamic migration and the snapshot deletion process as the
examples where unnecessary data is generated in the SSD
400. However, in addition to this embodiment, the present
invention can be applied to any situation where unnecessary
data is generated.

In addition, in place of the example where the RAID con-
troller 301 transmits the fixed-pattern data or the partial data
to the flash memory package 10, a logical address of a write-
destination region to which the fixed-pattern data is written
may be sent, and the FM controller 20 may create the fixed-

US 9,116,622 B2

29

pattern data or the partial data and write the created data into
aphysical region that is allocated to a region designated by the
sent logical address.

REFERENCE SIGNS LIST

1 Storage system
10 Flash memory PKG
400 SSD

The invention claimed is:

1. A storage system coupled to a host, comprising:

a nonvolatile semiconductor storage device, which
includes a nonvolatile semiconductor memory config-
ured by a plurality of pages, a storage medium storing
page management information indicating a state of each
page, and a memory controller coupled to the nonvola-
tile semiconductor memory and the storage medium;
and

a storage controller, which is coupled to the nonvolatile
semiconductor storage device and is configured to con-
trol access to a logical volume that is based on the
nonvolatile semiconductor memory, wherein

the state of each page includes valid, which means that the
page is allocated to a region of the logical volume and
has data stored therein, and invalid, which means that the
page is not allocated to the region of the logical volume
but has data stored therein, wherein

the storage system is configured to manage a plurality of
snapshot volumes which are respectively paired with a
primary volume, wherein each snapshot volume is a
virtual logical volume, and wherein

the storage controller is configured to send, in a case where
one of the plurality of snapshot volumes is deleted,
unnecessary reduction requests to the semiconductor
storage device, wherein each unnecessary reduction
request is a write request for writing fixed-pattern data or
an unmap request, and wherein

in a case where the data stored in the plurality of pages
become unnecessary to the host, with these plurality of
pages being a basis of a region of the logical volume, (A)
and (B) described hereinafter are performed:

(A) the storage controller is configured to transmit an
unnecessary reduction request for reducing a number of
pages that are the basis of the region having the unnec-
essary data stored therein; and

(B) the memory controller is configured to invalidate the
plurality of pages that are the basis of the region having
the unnecessary data stored therein, based on the unnec-
essary reduction request, with regard to the page man-
agement information, and store partial data of a fixed-
pattern data into a single page of the plurality of pages,
wherein fixed-pattern data size is that of write data and
partial data size is that of one page.

2. A storage system according to claim 1, wherein

the page management information stores correspondence
relationship between each of the plurality of pages and
the region of the logical volume to which the plurality of
pages are allocated,

in (A) described above, the storage controller is configured
to transmit, as the unnecessary reduction request, a write
request for writing fixed-pattern data into the region of
the logical volume to which are allocated the plurality of
pages in which the unnecessary data are stored,

the fixed-pattern data has a plurality of partial data of a
common pattern, a size of the partial data being equiva-
lent to a size of the page, and wherein

30

in (B) described above, the memory controller is config-
ured to:

(b1) specity a plurality of pages that are associated with the
region of the logical volume indicated by the write

5 request;

(b2) invalidate a plurality of specified pages with regard to
the page management information;

(b3) write the partial data of the fixed-pattern data into one
page different from the plurality of pages; and

10 (b4) associate a plurality of regions in units of page size in
the region of the logical volume with the one page into
which the partial data are written, with regard to the page
management information.

3. A storage system according to claim 2, further compris-

15 ing one or more other storage devices different from the

nonvolatile semiconductor storage device, wherein

in a case where regions of the other storage devices are
allocated to the region of the logical volume to which
one or more of the pages of the nonvolatile semiconduc-

20 tor storage device are allocated, the storage system, in
(A)described above, is configured to transmit the unnec-
essary reduction request to a nonvolatile storage device
that has a plurality of pages which are the basis of the
region of the logical volume.

25 4. A storage system according to claim 2, wherein

upon reception of a request for deleting the snapshot vol-
ume, the storage controller is configured to perform (A)
described above on the nonvolatile storage device that
has a page which is allocated to the snapshot volume and

30 is the basis of the region of the logical volume.

5. A storage system according to claim 2, wherein

the write request for writing the fixed-pattern data into the
region of the logical volume to which are allocated the
plurality of pages in which the unnecessary data are

35 stored, includes the partial data of the fixed-pattern data
that has the plurality of partial data of a common pattern,
and size information with which the size of the fixed-
pattern data can be specified,

a size of each partial data is equivalent to the size of the

40 page, and wherein

in (B) described above, the memory controller is config-
ured to specify a range of regions of the logical volume
indicated by the write request and specify a plurality of
pages associated with the specified range of regions of

45 the logical volume, on a basis of the size information.

6. A storage system according to claim 1, wherein

the page management information stores correspondence
relationship between each of the plurality of pages and
the region of the logical volume to which the plurality of

50 pages are allocated,

in (A) described above, the storage controller is configured
to transmit, as the unnecessary reduction request, a write
request for writing fixed-pattern data having a plurality
of partial data of a common pattern into the region of the

55 logical volume to which are allocated the plurality of
pages in which the unnecessary data are stored,

a size of each partial data is equivalent to a size of the page,
and wherein

in (B) described above, the memory controller is config-

60 ured to:

(b1) specity a plurality of pages that are indicated by the
write request and associated with the region of the logi-
cal volume;

(b2) invalidate a plurality of specified pages with regard to

65 the page management information; and

(b3) associate a plurality of regions in units of page size in

the region of the logical volume with one page different

US 9,116,622 B2

31

from the plurality of pages, and associates a data pattern,
with which the fixed-pattern data can be specified, with
the one page.

7. A storage system according to claim 6, further compris-
ing one or more other storage devices different from the
nonvolatile semiconductor storage device, wherein

in a case where regions of the other storage devices are

allocated to the region of the logical volume to which
one or more of the pages of the nonvolatile semiconduc-
tor storage device are allocated, the storage system, in
(A) described above, is configured to transmit the unnec-
essary reduction request to a nonvolatile storage device
that has a plurality of pages which are the basis of the
region of the logical volume.

8. A storage system according to claim 6, wherein

upon reception of a request for deleting the snapshot vol-

ume, the storage controller is configured to perform (A)
described above on the nonvolatile storage device that
has a page which is allocated to the snapshot volume and
is the basis of the region of the logical volume.

9. A storage system according to claim 6, wherein

the write request for writing the fixed-pattern data into the

region of the logical volume to which are allocated the
plurality of pages in which the unnecessary data are
stored, includes the partial data of the fixed-pattern data
that has the plurality of partial data of a common pattern,
and size information with which the size of the fixed-
pattern data can be specified, wherein

a size of each partial data is equivalent to the size of the

page, and wherein

in (B) described above, the memory controller is config-

ured to specify a range of regions of the logical volume
indicated by the write request and specify a plurality of
pages associated with the specified range of regions of
the logical volume, on a basis of the size information.

10. A storage system according to claim 1, wherein

the page management information stores correspondence

relationship between each of the plurality of pages and
the region of the logical volume to which the plurality of
pages are allocated,

in (A) described above, the storage controller s configured

to transmit, as the unnecessary reduction request, an
unmap request which includes range information indi-
cating a range of regions of the logical volume to which
are allocated the plurality of pages in which the unnec-
essary data are stored, and wherein

in (B) described above, the memory controller is config-

ured to specify a plurality of pages belonging to the
range of regions indicated by the range information and
invalidate a plurality of specified pages with respect to
the page management information, based on the range
information included in the unmap request and the page
management information.

11. A storage system according to claim 10, further com-
prising one or more other storage devices different from the
nonvolatile semiconductor storage device, wherein

20

25

40

45

32

in a case where regions of the other storage devices are
allocated to the region of the logical volume to which
one or more of the pages of the nonvolatile semiconduc-
tor storage device are allocated, the storage system, in
(A)described above, is configured to transmit the unnec-
essary reduction request to a nonvolatile storage device
that has a plurality of pages which are the basis of the
region of the logical volume.

12. A storage system according to claim 10, wherein

upon reception of a request for deleting the snapshot vol-

ume, the storage controller is configured to perform (A)
described above on the nonvolatile storage device that
has a page which is allocated to the snapshot volume and
is the basis of the region of the logical volume.

13. A storage system according to claim 1, further com-
prising one or more other storage devices different from the
nonvolatile semiconductor storage device, wherein

in a case where regions of the other storage devices are

allocated to the region of the logical volume to which
one or more of the pages of the nonvolatile semiconduc-
tor storage device are allocated, the storage system, in
(A)described above, is configured to transmit the unnec-
essary reduction request to a nonvolatile storage device
that has a plurality of pages which are the basis of the
region of the logical volume.

14. A storage system according to claim 1, wherein

upon reception of a request for deleting the snapshot vol-

ume, the storage controller is configured to perform (A)
described above on the nonvolatile storage device that
has a page which is allocated to the snapshot volume and
is the basis of the region of the logical volume.

15. A storage control method of a storage system coupled
to a host,

in a case where a snapshot volume has been deleted or data

stored in a plurality of pages become unnecessary to the
host, with the plurality of pages being the basis of a
region of a logical volume based on a nonvolatile semi-
conductor storage device that includes a nonvolatile
semiconductor memory configured by a plurality of
pages,

the method comprising: transmitting, to the nonvolatile

semiconductor storage device via a storage controller, an
unnecessary reduction request for reducing a number of
pages that are a basis of the region having an unneces-
sary data stored therein; and

invalidating, based on the unnecessary reduction request

from the storage controller to the nonvolatile semicon-
ductor storage device, the plurality of pages that are the
basis of the region having the unnecessary data stored
therein, and storing partial data of a fixed-pattern data
into a single page of the plurality of pages, wherein
fixed-pattern data size is that of write data and partial
data size is that of one page.

#* #* #* #* #*

